石英晶体谐振器,石英晶振是一种用于稳定频率和选择频率的重要电子元件.具有频率稳定度高、Q值高、成本低的特点,广泛应用于时间频率基准和为时序逻辑电路提供同步脉冲.随着电子信息技术及产业的飞速发展,尤其是数字电子技术的广泛应用,石英晶振,贴片晶振,石英晶体元器件的市场需求量快速增长,同时对其性能的要求向高频率和高精度.下面CEOB2B晶振给大家介绍会影响到石英晶振频率的因素有哪些?
一、老化
老化效应是石英晶体固有的物理现象,其谐振频率随时间推移缓慢减小或增加的变化过程,称为石英晶体的老化.AT切石英晶体谐振器的老化主要源于下述方面:
1、谐振器内部石英晶格的不完善导致石英晶体在工作时其结构发生变化,此是长期效应:另气体的分解和吸收导致极板质量的改变或迁移,影响会持续数周或数年;
2、由于温度梯度效应而产生的老化;
3、因压力释放效应而产生老化,此为温度梯度效应过程的函数,一般持续数月;
二、温度
环境温度是影响石英晶振,石英晶体谐振器频率变化的最主要因素,石英晶振,石英晶体谐振器谐振频率会随温度的改变而变化,这种性质称其频率温度特性:石英晶体谐振器的频率-温度特性除与其本身物理特性有关外,还与其切割角度(即切型)和加工流程有一定关系.恒温型和温度补偿型晶体振荡器这两类高稳定度晶体振荡器正是基于频率温度特性研制而成的.
三、其它因素,除温度和老化两大主要因素之外,下述因素给谐振器的谐振频率也会带来一定的影响.
激励电平的变化:研究表明,激励电平对晶体振荡器谐振频率有明显的影响;激励电流的过大或者过小,都将影响石英晶振晶体的老化性能和谐振频率的长期或者短期稳定度,从而激励电平的是否稳定直接影响到石英晶体谐振器的频率稳定度.
除此以外;负载的变化、电源电压的波动以及核辐射等也都会导致石英晶振,石英晶体谐振器的谐振频率发生变动.当石英晶体谐振器用于某些精度要求特别高的场合时,这些因素给谐振器谐振频率造成的影响也是不可忽视的.
CEOB2B晶振平台是集销售,批发,海内外各品牌晶振料号规格的优质电子商务平台,提供免费产品推广,海内外晶振规格料号查询,下载等服务.在这里你可以查询到中国境内所有生产,销售一体化的晶振专业性平台.
石英晶体振荡器是利用石英晶振的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC共同作用来工作的.振荡器直接应用于电路中,谐振器工作时一般 需要提供3.3V电压来维持工作.振荡器比谐振器多了一个重要技术参数:谐振电阻(RR),谐振器没有电阻要求.RR的大小直接影响电路的性能,因此这是各商家竞争的一个重要参数.
石英晶体振荡器也分为无源晶振和有源晶振两种类型.无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(石英晶体),而有源晶振则叫做oscillator(振荡器).无源晶振需要借助于时钟电路才能产生振荡信号自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的振荡器.石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件.
石英晶体振荡器的频率温度特性主要是由石英晶体谐振器的频率温度特性来决定的,常用的AT切晶体谐振器的频率温度特性为三次曲线,温补振荡器的温度补偿原理就是通过改变振荡回路中的负载电容,使其温度随温度变化来补偿振荡器由于环境温度变化而生成的频率漂移来实现的.
激光减薄工艺的优点在于,只减薄表面银层,并不伤及晶片本身;同时由于不改变电极有效面积,因而对石英晶体谐振器晶片本身电性能参数影响不大;刻蚀图形选择较灵活;刻蚀外形美观,肉眼几乎看不出痕迹.而其缺点在于可调的频率微调量小,真空中最大只能调节到500ppm左右,而大气中最大只能调节到100ppm左右.而在需要较大频率微调量的情况下,加在激光强度,很容易就会把中央膜层击穿,完全打光,而这样就会对贴片晶振晶片的电性能参数及频率曲线造成严重损害,并且刻蚀表面不美观.
业内人士都知道,晶振可分为石英晶体谐振器和石英晶体振荡器,而音叉晶振属于石英晶体谐振器的一种,之所以被称为音叉晶振是因为其石英晶片外型类似于音叉形状.实际上,基本所有的电子信息技术产品都需要晶振来为其提供时钟频率,以供更好的工作.由此可见音叉晶振在电子信息技术产业中是怎样的地位.2011年全球音叉晶体谐振器的总产额达到一百亿颗,产值约为二十亿美金.据调查,同年我国的音叉晶体总产额大约为四十亿颗,产量为全球总产额的百分之四十左右.
我们总说石英晶振两个分类中石英晶体振荡器是如何如何的优于石英晶体谐振器,无论是频率精准度还是抗环境性呢能,也常说石英晶体谐振器都是使用在常见的消费类智能电子产品中,而石英晶体振荡器则是使用在高端科技领域中的各种设备基站上的。这样的潜意识下我们总认为石英晶体振荡器是强于石英晶体谐振器的,但其实并不然,虽然在电气性能运用上它们有所差距,但是在储存设计对外在条件的苛刻要求上,石英晶体振荡器和石英晶体谐振器是一样的严格脆弱的,因为两者的核心组成都是石英晶体片。
晶振是常用的电子元器件产品,晶振本身分类非常多,每种类别的晶振都有自己不同的运用领域以及功能特点,我们最常见的晶振类别要数陶瓷晶振和石英晶振了。陶瓷晶振还有三个小分类:陶瓷谐振器,陶瓷滤波器,陶瓷鉴频器;石英晶振主要是两类带电压和不带电压的,带电压的我们叫它石英晶体振荡器,不带电压的我们叫它石英晶体谐振器。石英晶振无论是存储注意事项、焊接注意事项以及生产工序等我们都有在前面的文章详细介绍过,也相信大家也了解了非常多了,今天我们来说一下陶瓷晶振的生产过程及主要生产工序步骤。
在前面的文章中有介绍过石英晶体谐振器的基本结构、原理、应用,以及与石英晶振相关的一些电性能参数.也有讲到过多种石英晶振频率微调技术.但是现有的三种频率微调技术均有各自的缺陷,而采用激光频率微调技术就可以克服掉这些缺陷.
非直接接触式的激光频率微调并不会造成晶片表面温升过高,因而不会产生蒸发频率微调技术和溅射频率微调技术中的膜层易被氧化的问题.同时,非接触式加工方法,克服了溅射频率微调技术法中存在的晶振晶片表面电荷积累问题;并且,由于激光具有高度的方向性其光斑只有几平方毫米,最小可达微米数量级,因而移动方便,定位准确,可以用于多片同时频率微调,这就克服了离子束刻蚀频率微调的生产率低的问题。
此外,激光频率微调技术还具有许多其他方案不可代替的优点:结合成熟的激光加工工艺和频率检测工艺的新技术,拥有较高的频率微调精确度;并且生产效率高,经济效益好,有很大的实用价值.
激光加工的灵活性,允许加工成任意的图形,这就对其应用范围没有限制,可以应用于各种形状的石英晶振,贴片晶振。并且, 激光频率微调与计算机技术相结合,可实现自动控制,是现代化大生产的发展趋势。综合以上,本课题选用了代表未来发展趋势的激光频率微调技术来对石英晶振进行频率微调。
因而,论文的主要研究任务就在于:
(1)从理论和实验两个方面,证实激光用于石英晶振频率微调的可行性,并获取定量的刻蚀数据。
(2)从理论方面,研究激光刻蚀以及激光损伤的机理,从而尽可能的减小激光刻蚀对于石英晶振晶片可能存在的影响。
(3)通过反复实验,探索激光刻蚀工艺研究,寻找激光刻蚀参数、工艺与刻蚀结果之间的定性、定量关系,增强激光刻蚀的可操作性和可控制性。
(4)在以上研究的基础上,进行激光刻蚀系统的研究。包括采样系统、数据处理系统、控制系统等整个系统的设计。
在前面的文章中我们有提到关于石英晶振磁控溅射技术原理磁控溅射是在真空条件下导入一定压力的惰性气体(Ar),阴阳极间形成一定强度的电场,并引入强磁场施加影响,使被阳离子轰击而溅射出的靶材金属粒子加速射向欲镀覆基片表面。那么接下来CEOB2B晶振平台将要说的是石英晶振磁控溅射频率微调技术应用及优缺点分析。
在真空等离子体气氛中,氩离子轰击银靶,溅射出高能银粒子射向晶振晶片表面,从而增加表面银电极的厚度,进而改变石英晶体谐振器的谐振频率。其装置示意图如图1.3所示。与蒸发频率微调法类似,磁控溅射频率微调在对石英晶体谐振器进行频率微调时,也分为粗调和细调两步进行。
石英晶振磁控溅射频率微调的优、缺点
优点:
(1)与蒸发频率微调法相比,溅射离子比蒸发原子或分子的平均能量大数十倍,提高了表面原子迁移率及体扩散,使膜层性能及附着力增强。
缺点:
(1)晶振磁控溅射镀覆设备价格昂贵,设备操作、维护复杂。
(2)对于靶材——银的利用率低,最高只能达到50%。
(3)与石英贴片晶振蒸发频率微调法类似,粗调后的膜面已暴露过大气,易被氧化,并且使得表面落上灰尘、杂质颗粒,而细调新镀膜层又较薄,导致膜层结合力差, 易产生脱焊、固熔断线问题。这同样也是磁控溅射频率微调技术的致命缺点。
(4)由于离子对阴极靶材的轰击,使靶材表面溅射出二次电子,这些电子经等离子体后,易堆积在阳极表面,使表面形成电荷积累,无法再继续沉积。
可见,以上两种方法都无法满足大规模工业生产和激烈的市场竞争的需要更能适应生产需求的新型工艺呼之欲出。
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.

石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置