假设在石英晶振中,对应于能态E2的集居数为N2对应于能态E1的集居数为N1,一个平面波对应的光子通量正沿着物质的轴向Z传播。由于受激吸收和受激辐射而产生的光子通冕的改变为:dF=oF(N2-N1)dZ
它表示:如果N2>N1,则dF/dZ>0。石英晶振起放大作用。如果N2<N1, 则dF/dz<0,石英晶振起衰减作用。在热平衡条件下,各能态的集居数是按玻尔兹曼分布,N2<N1所以,晶振总是以吸收为主。如果在特定情况下N2>N1。该石头晶体的受激辐射作用大于受激吸收作用,该物质就可以产生更多的光子通量而作为光放大器。这种特殊状态称之集居数反转,指与通常状态的集居数分布不同。
在前面的文章中我们有提到关于石英晶振磁控溅射技术原理磁控溅射是在真空条件下导入一定压力的惰性气体(Ar),阴阳极间形成一定强度的电场,并引入强磁场施加影响,使被阳离子轰击而溅射出的靶材金属粒子加速射向欲镀覆基片表面。那么接下来CEOB2B晶振平台将要说的是石英晶振磁控溅射频率微调技术应用及优缺点分析。
在真空等离子体气氛中,氩离子轰击银靶,溅射出高能银粒子射向晶振晶片表面,从而增加表面银电极的厚度,进而改变石英晶体谐振器的谐振频率。其装置示意图如图1.3所示。与蒸发频率微调法类似,磁控溅射频率微调在对石英晶体谐振器进行频率微调时,也分为粗调和细调两步进行。
石英晶振磁控溅射频率微调的优、缺点
优点:
(1)与蒸发频率微调法相比,溅射离子比蒸发原子或分子的平均能量大数十倍,提高了表面原子迁移率及体扩散,使膜层性能及附着力增强。
缺点:
(1)晶振磁控溅射镀覆设备价格昂贵,设备操作、维护复杂。
(2)对于靶材——银的利用率低,最高只能达到50%。
(3)与石英贴片晶振蒸发频率微调法类似,粗调后的膜面已暴露过大气,易被氧化,并且使得表面落上灰尘、杂质颗粒,而细调新镀膜层又较薄,导致膜层结合力差, 易产生脱焊、固熔断线问题。这同样也是磁控溅射频率微调技术的致命缺点。
(4)由于离子对阴极靶材的轰击,使靶材表面溅射出二次电子,这些电子经等离子体后,易堆积在阳极表面,使表面形成电荷积累,无法再继续沉积。
可见,以上两种方法都无法满足大规模工业生产和激烈的市场竞争的需要更能适应生产需求的新型工艺呼之欲出。
在国内外针对石英晶振生产工艺和理论研究做出了很多验证,主要有三种技术,最早出现的是蒸发沉积和磁控溅射沉积表面电极以增加晶振质量,进而微调晶振的谐振频率。随着研究的不断进展,自20世纪80年代中期开始出现关于离子束刻蚀石英晶振频率微调技术的研究.下面CEOB2B晶振平台所要讲的是有关石英晶振蒸发频率微调技术的优缺点对比.
优点:
(1)设备简单,操作容易;(2)不会造成频率漂移,对实时测量影响较小。
缺点:
(1)镀层与基片的结合力差(2)坩埚容积小,不可能长时间、连续工作;(3)材料浪费,由于银的价格昂贵,而每次蒸发到基片表面上的材料不足30%,因而造成很大的浪费.
(4)初次镀银电极后的石英贴片晶振膜面已暴露过大气,使得表面落上灰尘、杂质颗粒,再加上银在高温时易被氧化,而微调新镀膜层又较溥,导致膜层结合力差, 易产生脱焊、固熔断线问题。这是蒸发沉积法进行频率微调的致命缺点,也是在实际生产中生产率低下的主要因素。膜层示意图如图1.2所示。
磁控溅射频率微调技术:溅射技术包括磁控溅射、直流溅射、射频溅射等多种,目前广泛应用于石英晶振频率微调的溅射技术是磁控溅射技术。
磁控溅射技术原理:磁控溅射是在真空条件下导入一定压力的惰性气体(Ar),阴阳极间形成一定强度的电场,并引入强磁场施加影响,使被阳离子轰击而溅射出的靶材金属粒子加速射向欲镀覆基片表面。
在前面的文章中我们知道激光具有高亮度、高单色性、高相干性、高方向性等四大优点,尤其是它具有极高的功率密度,可达1010-12w/CM2,因而是一种性能优异的加工光源。因此我们通过将激光微加工工艺应用于石英晶振频率微调,并通过理论与实验证明。
激光微加工”和其它微加工方法相比具有明显的优越性,表现为以下几方面:
(1)加工制作条件较易得到满足:
尽管“电子束”、“X射线”、“离子束”具有更短的波长,在提高分辨率方面有更多的好处,但它们在“曝光源”、“掩膜”、“抗蚀剂”、“成像光学系统”等方面都存在极大的困难,与此相比,激光有着明显的经济性和现实性。随着新型激光器的发展,它可将加工波长扩展至DUV和VUV,分辨率达到亚微米。
(2)功率密度高:
激光加工的功率密度可达108~109W/cm2,大大缩短了晶振产品加工时间。
(3)加工对象广泛
“激光微加工”可用于多种材料的精密加工,如金属、有机物、无机物、陶瓷等,在加工的过程中可控制激光的切削尝试,这使得利用激光进行高精密切削成为可能。
目前,“激光微加工”的应用领域比较广泛,主要包括以下几方面:
(1)精密打孔:
激光精密打孔可对各种材料进行打微孔的加工。目前,激光打孔已广泛应用于金刚石模具、钟表石英,贴片晶振,轴承小孔的加工,它也可用于对陶瓷、橡胶、塑料等非金属材料的精密打孔。
(2)精密切割:
激光精密切割的切缝窄,切缝边缘质量高,切割速度快,几乎没有残渣。在切割金属时可采用吹氧工艺使金属表面氧化而增强对激光的吸收能力;在切割非金属时采用吹惰性气体的方法排除熔融物。
(3)电阻电容的微调:
激光微调就是用激光束按一定的轨迹在膜片上照射,使膜层达到气化温度而迅速蒸发,减少了电阻膜的导电面积从而达到改变膜片电阻值的目的。电阻微调分薄膜电阻微调和厚膜电阻微调两种。薄膜电阻膜厚为几百埃至几微米,常用镍铬等合金材料,厚膜电阻膜厚为几微米至几十微米。它还可以用于电子线路或石英晶振等电子器件的功能微调,如有源滤波器的中心频率、带宽和增益的微调,运算放大器失调电压的微调等。电阻电容的微调一般采用YAG固体激光器。
(4)精密焊接
精密焊接加热速度快、焊点小、焊缝窄、热影响区小,因而焊接变形小、精度高且无需真空设备。它能对绝缘体直接焊接、能焊接有色金属及异种金属,它还可进行薄片间的焊接、丝与丝间的对焊及缝焊。激光精密焊接特別适用于微型、精密、排列紧密和热敏焊件。广泛应用于微电子元件如集成电路内外引线的焊接、电子器件管壳封焊、热电偶的焊接、仪表微丝焊接等领域.
如果将石英晶体置于交变电场中,则在电场的作用下,晶体的体积会发生周期性的压缩或拉伸的变化,这样就形成了晶体的机械振动,晶体的振动频率应等于交变电场的频率,在电路中也就是驱动电源的频率。当石英晶振晶体振动时,在它的两表面产生交变电荷,结果在电路中出现了交变电流,这样压电效应使得晶体具有了导电性,可以视之为一个电路元件。
石英晶体本身还具有固有振动频率,此振动频率决定于石英晶振晶体的几何尺寸、密度、弹性和泛音次数,当晶体的固有振动频率和加于其上的交变电场的频率相同时,晶体就会发生谐振,此时振动的幅值最大,同时压电效应在石英晶体表面产生的电荷数量和压电电导性也达最大,这样晶体的机械振动与外面的电场形成电压谐振,这就是石英晶体作为振荡器的理论基础。
石英晶振晶体的电气特性可用图中所示的等效电路图来表示,由等效电阻R1、等效电感L1和等效电容C1组成的串联谐振回路和静态电容Co并联组成,静态电容C0主要由贴片晶振,石英晶体的尺寸与电极确定,再加上支架电容组成。等效电感L1和等效电容C1由切型、石英晶体片和电极的尺寸形状来确定。等效电阻R1是决定石英晶振Q的主要因素,是直接影响石英谐振器工作效果的一个重要参数。R1不仅由切型、石英晶体片形状、尺寸、电极决定,而且加工条件、装架方法等对其影响也很大。因此,同一型号,同一频率的若干产品其Q值也相差很大。
在等效电路中,L1和C1组成串联谐振电路,谐振频率为:
通常石英晶体谐振器的阻抗频率特性可用图2.3表示。此处忽略了等效电阻R1的影响,由图可见,当工作频率f
晶振在产品中的作用是千变万化的,根据不同产品的需求选择各式各样的石英晶振产品.CEOB2B晶振平台在前面的文章中讲到过,关于晶振作为微力传感器的发展等研究.
从上述可知,现有的基于微悬臂的扫描磁力显微镜存在种种不足。鉴于此,本文想研制出一种采用新型传感器的结构紧凑的扫描磁力显微装置,以达到高的测量稳定性、准确性和具有纳米尺度的测量分辨率。由此,该仪器的研究成功,可在下面几个方面起到促进作用。
首先它可用于磁记录工业中的质量检验控制中。例如对光盘制造进行超微观检测。另外对磁记录位的大小及分布等进行高分辨率的检测。再次,可用于对生物样品磁触觉细菌内亚微米磁畴颗粒进行直接观察及对单个细菌细胞内磁矩的定量研究。而这一点正是传统的悬臂式MFM所无法达到的。因此,本课题的完成,将对磁记录体系、铁及铁磁矿和其他材料的微结构研究和生物领域带来巨大的经济效益和社会效益。
本课题来源于国家教育部博士点专项基金项目“计量型多功能扫描探针显微镜的研究”。本人自进入实验室以来,一直从事基于石英晶振的MFM及其腐针技术的研究,具体研制内容如下:
(1)晶振作为测量元件的物理特性试验研究,晶振一表面系统的动力学模型研究及机理试验,使用晶振的微力传感器的构成、设计和测量。
(2)磁力显微镜测量机理的研究。
(3)探针电化学腐蚀技术的研究。
CEOB2B晶振平台通过研究并分析晶振的原理,同时免费提供关于晶振的各种技术资料下载.CEOB2B晶振平台只有你想不到的没有你找不到的,晶振型号规格,各大晶振品牌替换信息均可查询,欢迎登入平台了解详情.
接着前面的文章我们继续分析基于晶振的微力传感器的发展.有不懂的问题可以到CEOB2B晶振平台晶振技术资料中查看,有关石英晶振的各种型号,参数信息均可查到.
非接触模式是控制探针在样品表面上方扫描,始终不与晶振样品表面接触因而针尖不会对样品造成污染或产生破坏,避免了接触模式中遇到的一些问题。针尖和样品之间的作用力是很弱的长程作用力一范德华吸引力。非接触模式是测量长程力所采用的方法,其分辨率比接触模式的分辨率要低,由于针尖很容易被表面吸附气体的表面压吸附到样品表面,造成图像数据不稳定和对样品的破坏。因此非接触模式操作实际上较为困难,并且通常不适合在液体中成像。
轻敲模式介于接触模式和非接触模式之间(13l。其特点是扫描过程中微悬臂也是振荡的并具有比非接触更大的振幅(大于20nm),针尖在振荡时间断地与样品接触。由于针尖与晶振等样品接触,分辨率几乎和接触式扫描一样的好,但由于接触是短暂的,因此对样品的破坏几乎完全消失,克服了常规扫描模式的局限性。轻敲模式还具有大而且线性的操作范围,使得垂直反馈系统具有高度稳定性,可重复进行样品测量。对于软、粘和脆性样品的研究具有独到的优势但轻敲模式同样也增加了操作和设备的复杂性,在实际运用中存在着不易控制的缺点。
SFM技术的发展强烈依赖于带有特殊针尖的微悬臂制备技术的发展13-15。这种微悬臂和针尖必须是能够简便而快速制备的。在原子力显微镜发展之初,悬臂几何形状一般为L形。其主要是通过将一个很细的金属丝或线圈弯曲90°后,顶端经电化学腐蚀成一个针尖而制备得到的。这种制备方法完全依赖于实验技师的手工技能。第二种悬臂制备方法是微刻技术。第一代是简单的SiO2悬臂,形状为直角和三角,是从氧化硅片上刻蚀得到的。其同腐蚀金属针尖相比,不能很好的控制其尖锐程度。后来改用SiN4代替SiO2作为悬臂材料。Si3N4脆性较低,而且厚度可以从1.5降到0.3um。这一代悬臂具有完整针尖,而且曲率半径非常低。
美国斯坦福大学是在硅片上刻蚀出金字塔形的小片,可以得到曲率半径小于30nm的针尖。IBM公司则采用硅片(100)来制备具有完整针尖的硅悬臂,曲率半径低于100nm。这些通过微电子加工将针尖集成于一体的微悬臂方法有很好的可重复性,不需粘另外的针尖,便于大批量生产。所以一般商用的AFM都采用这种力传感器。但对于静电力显微镜和磁力显微镜来说,由于针尖材料具有特殊的要求,还是要采用在微悬臂上粘针尖的方法。
从以上可以看出,这些基于微悬臂的SFM它们都有一个共同的缺点;它们不仅需要一个结构复杂的微小悬臂作为力的传感器,而且还要一个激光干涉仪用于检测微悬臂的微小位移来获得表面变化信息。因而结构较为复杂,成本也很高,操作难度增大,也就造成其在应用中的局限性。所以必须采用其他的传感器和非光学的检测方法。
CEOB2B晶振平台是全球最优质电子商务平台,提供免费产品推广,海内外晶振规格料号查询,下载等服务.在这里你可以查询到海内外所有品牌产品替代,上百家知名晶振品牌,替代产品终有一家适合你的.今天要为大家介绍的是有关晶振的MFM的主要应用及存在的问题.
1.MFM的应用14.5.6
磁记录介质材料是MFM研究最多的物质之一。事实上,在MFM发展初期,MFM首先用于各种磁记录介质和磁头,在很小的尺度上仔细研究写入的磁斑、记录的轨道、磁头磁场分布等,以分析和判断磁盘和磁头的性能。现在, MFM业已成为高密度磁盘常规测试的工具。超高密度磁存储技术的发展要求在纳米尺度研究磁性晶体的微结构及探测磁性晶体的单畴性,因而必须采用MFM。
Martin等人第一次利用MFM对Tb1 ofer薄膜(一种重要的磁光材料)中写入的磁畴结构(静磁场)作了研究,空间分辨率达到100nm。MFM也可对软磁膜的磁畴进行结构研究。MFM具有足够的灵敏度和分辨率来观察图像中波动结构等磁信息。针尖样品,石英晶振元件间距少于100nm时,还可清晰看到针尖诱导畴壁运动的证据。
再次,MFM能够用来观察磁粒子的微磁学性质和一些物质的磁壁结构近年来,利用MFM对有机铁磁体以及生物分子磁性的研究也已经引起科学工作者的广泛重视。
2.MFM研究中的一些问题
各种磁性材料磁力(梯度)图的准确测量。实际上这就要使磁针尖和样品匹配起来,尽可能减少磁针尖和样品的相互影响。
MFM的定量测量和磁畴结构的计算机模拟。MFM的定量测量,在很大的程度上是测定磁针尖的性质,如磁矩、弹性系数、品质因数等。但这是相当困难的,何况小小的磁针尖上还可能存在磁性微结构。这就要用校准的方法,并对针尖作合理的近似,才能开展对所测磁力图的解释、分析和计算机模拟工作。
MFM在1987年发明后的很短期间内,分辨率已达到50nm。但至今其现实的横向分辨率仍停留在50-20nm,表明在MFM现有的构架内分辨率已难以突破,要获得实质性的提高,需要有新的思想.
我们接着前面介绍到的石英晶振片的由来以及工作原理,我们接着说石英晶振晶片的电极对膜厚监控、速率控制至关重要。目前,市场上提供三种标准电极材料:金、银和合金。
金是最广泛使用的传统材料,它具有低接触电阻,高化学温定性,易于沉积。金最适合于低应力材料,如金,银,铜的膜厚控制。用镀金晶振片监控以上产品,即使频率飘移IMHz,也没有负作用。然而,金电极不易弯曲,会将应力从膜层转移到石英基片上。转移的压力会使晶振片跳频和严重影响质量和稳定性。
银是接近完美的电极材料,有非常低的接触电阻和优良的塑变性。然而,银容易硫化,硫化后的银接触电阻高,降低晶振片上膜层的牢固性。
银铝合金晶振片最近推出一种新型电极材料,适合高应力膜料的镀膜监控,如siO,SiO2,MgF2,TiO2。这些高应力膜层,由于高张力或堆积的引]力,经常会使晶振片有不稳定,高应力会使基片变形而导致跳频。这些高应力膜层,由于高张力或堆积的引力,经常会使贴片晶振,石英晶振片有不稳定,高应力会使基片变形而导致跳频。银铝合金通过塑变或流变分散应力,在张力或应力使基体变形前,银铝电极已经释放了这些应力。这使银铝合金晶振片具有更长时间,更稳定的振动。有实验表明镀Si02用银铝合金晶振片比镀金寿命长400%。
镀膜科技日新月异,对于镀膜工程师来说,如何根据不同的镀膜工艺选择最佳的晶振片确实不易。下面建议供大家参考
(1)镀低应力膜料时,选择镀金晶振片
最常见的镀膜是镀A、Au、Ag、Cu,这些膜层几乎没有应力,在室温下镀膜即可膜层较软,易划伤,但不会裂开或对基底产生负作用。建议使用镀金晶振片用于上述镀膜,经验证明,可以在镀金晶振片镀60000埃金和50000埃银的厚度。
(2)使用镀银或银铝合金镀高应力膜层
NiCr、Mo、Zr、Ni-Cr、Ti、不锈钢这些材料容易产生高应力,膜层容易从晶体基片上剥落或裂开,以致出现速率的突然跳跃或一系列速率的突然不规则正负变动。有时,这些情况可以容忍,但在一些情况下,会对蒸发源的功率控制有不良作用。
(3)使用银铝合金晶振片镀介质光学膜
MgF2、SiO2、A2O3、TiO2膜料由于良好的光学透明区域或折射率特性,被广泛用于光学镀膜,但这些膜料也是最难监控的,只有基底温度大于200度时,这些膜层才会与基底有非常良好的结合力,所以当这些膜料镀在水冷的基底晶振片上,在膜层凝结过程会产生巨大的应力,容易使晶振片在1000埃以内就回失效。
石英晶振在如今产品中的应用变得尤为重要,为了更好的使用晶振,我们除了要知道晶振的生产材料,晶振使用型号参数等一些条件之外,关于晶振的使用注意事项,以及石英晶振,贴片晶振晶片的一些关注点也应该知道.在前面的文章中CEOB2B晶振平台介绍了晶振晶片的由来以及其工作原理,下面我们要介绍的是膜厚控制仪用电子组件引起晶振片的高速振动和晶振监控的优缺点.
膜厚控制仪用电子组件引起晶振片的高速振动,约每秒6百万次(6MHz),镀膜时,测试每秒钟振动次数的改变,从所接受的数据中计算膜层的厚度。为了确保晶振片以6MHz的速度振动,在真空室外装有“振荡器”,与晶控仪和探头接口连接,振荡器通过迅速改变给晶振片的电流使晶振片高速振动。一个电子信号被送回晶控仪。晶控仪中的电路收到电子信号后,计算晶振片的每秒振速。这个信息接着传送到个微处理器,计算信息并将结果显示在晶控仪上:
(1)沉积速率(Rate) (埃/秒)
(2)已沉积的膜厚( Thickness) (埃)
(3)晶振片的寿命(Lie) (%)
(4)总的镀膜时间(Time) (秒)
更加精密的设备可显示沉积速率与时间的曲线和薄膜类型。
石英晶振监控的优缺点
◆优点:
1.晶振法是目前唯一可以同时控制膜层厚度和成膜速率的方法。
2.输出为电讯号,很容易用来做制程的自动控制。
3.对于厚度要求不严格的滤光片可以利用作为自动制程镀膜机。
4.镀金属时,石英监控较光学监控来的方便精确。
◆缺点
1.厚度显示不稳定。
2.只能显示几何厚度,不能显示折射率。
3.一般精密光学镀膜厚度只用做参考,一般用作镀膜速率的控制。
◆所以一台镀膜设备往往同时配有石英晶体振荡器监控法和光学膜厚监控法两套监控系统,两者相互补充以实现薄膜生产过程中工艺参数的准确性和重复性,提高产品的合格率。
在前面的文章中我们了解到了GPS的应用以及高精密石英晶体振荡器在GPS内部所提供到的作用,GPS晶振的工作原理等等。晶振的作用随着科技的发展到如今已是无处不在,各种大大小小的智能科技产品都会用到石英贴片晶振.接下来我们要说到的是GPS信号失效后保持算法的研究以及与晶振之间的联系.
从前面文中介绍GPS接收机的相关介绍可知,1PPS信号可能在多种因素的作用下丢失。如果通过解码发现失效,应立即停止以它作为基准来驯服OCXO晶振,否则可能对OCXO晶振产生误调整,使系统产生很大的误差,但是这时OCXO晶振的输出频率精度会由于老化和温度等因素的影响而不断降低。为了解决这一问题,采用保持算法, 即在正常锁定过程中,实时记录晶振的频率随时间的漂移率,即确定石英晶体老化率曲线,再利用温度传感器,建立温度和频率漂移率的函数关系。当GPS信号失效后,根据以前正常驯服状态下记录的历史数据,通过合理的算法对OCXO晶振输出频率的变化趋势做出准确预测,进而在此基础上实现对频率误差的实时校正,以保证输出频率精度在可容忍的精度范围内,直到GPS信号恢复后再继续锁定晶振。
OCXO石英晶体振荡器的老化模型是非线性的,而其频率温度变化模型则可认为是线性的,并且可以利用 Kalman滤波器来对这两种模型的参数进行估计,进而可以实现GPS信号失效后OCXO晶振频率的预测校正。然而老化率的非线性是对于较长时间而言的,在短时间内比如说一天,老化模型也可以被简化为线性,这大大方便了算法上的处理关于OCXO石英晶体振荡器的驯服保持模型的原理框图如图5.3所示
图中的三个开关S1、S2、S3在卫星工作状态正常时均处于开启状态,OCX0石英晶体振荡器直处于驯服状态,并且预测模型一直处于工作模式。如果系统经过判断确定卫星信号丢失,而且当时已经完成锁定,系统便会处于保持模式,三个开关均闭合, 这样老化和温度预测模型可以根据其预测的结果并以自己本身的输出作为观测量的输入来实现频率偏差的预测。预测模型的最终输出是出四项叠加而成:驯服的初始校正量、老化模型的预测输出、温度影响模型的预测输出和温度模型的延迟补偿量.
为了实现1PPS信号失效后的保持,必须先将由老化和温度变化引起的影响量分离开来,而分离算法的确定与这两种影响的性质有密切关系。一般认为老化的影响属于慢变,而温度的影响则相对变化较快,即在频域,老化的影响处于低频段,温度的影响处于较高的频段,这样就可以将它们分离开来,即采用不同类型和带宽的数字滤波器就可以实现这两种影响的分离国,ⅢRF、IRF2和RF为滤波器, 其中IRF和IRF3为1阶的低通滤波器,IRF2为3阶的低通椭圆滤波。
图中的IRF1是用来同时通过锁定状态下由温度变化引起的校正量中的高频变化部分和老化引起的低频变化部分,其带宽应该由高频分量确定。在一般的应用环境下,温度的最大变化率可以达到10℃h,而这里所采用的OCXO贴片晶振的线性频率温度系数为6~8ppb/40℃,于是可以得到最大温度变化率引起的频率漂移率达到4.17~5.56×10-4ppb/s。所以IRF的带宽被设计为3×10-3ppb/s(3mHz),即是最大频率温度漂移率的5.4倍,这样就可以通过所需要的信号,并且针对校正信号中由GPS接收机引入的高频噪声,进行每10倍频10dB的衰。
IRF2用于从经过RF滤波后的校正量中分离出老化的影响,那么其带宽由反映老化的低频分量决定。这里采用的OCXO晶振的老化率为0.5ppbd或者58×10-6ppb/s,所以IIRF2的带宽被设计为3×10-5ppbs(0.03mHz),即为秒老化率的5.2倍,并且其阻带衰减最小为50dB,带内波动为1.5dB,这样可以较好的过滤掉温度的影响。IRF2的输出直接输入给了老化的 Kalman预测模型,并且将其从IRFl的输出中减掉,可以提取出温度的影响。
IRF用和RF完全相同的设计,主要用来进一步抑制GPS接收机引入的噪声和消除IRF2输入输出信号的数字相减带来的毛刺。由于IRF1和IRF2处于温度影响预测模型的输入通道上,会使得校正量的预测产生延迟,使预测滞后于IRFl的输入信号。因此有必要在温度预测模型的输出加上一个延迟补偿模块,由它在保持模式时计算出相应的补偿量,并叠加到预测模型的输出信号上来消除延迟的影响。这里的延迟补偿量由温度预测模型输出的变化率和滤波器的延迟量相乘来得到,而滤波器的延迟量的最优估计为个小时,温度预测模型输出变化率由其输出对于时间的一阶微分的100点滑动平均来得到,其中每秒采集一个数据。
在进行系统测试时,被锁晶振采用高稳定度恒温晶体振荡器(10MHz±3Hz),GPS接收机选用LASSEN IQ型,采用5585B-PRS型铯原子频标作为频率参考,该铯原子频标可输出10MHz信号,具有较好的频率准确度及稳定度,其频率准确度优于5×10-12,秒级频率稳定度优于1×10-11/s。
采用相位比对的方法来测试被锁石英晶振的相对频率准确度,测试连接图如图5.1所示。将被锁定的晶体振荡器的10MHz频率信号和铯原子频标产生的10MHz频率信号分别作为开关门信号输入到精密时间间隔测试仪HP5370B(分辨率为20ps) 进行比对测试,HP5370B输出的时间间隔值与两个比对信号的相位差成正比。该时间间隔值的变化反映了两个信号的相位差的变化。计算相对频差的公式为:
其中,τ为取样周期;△T为在取样周期τ内两信号累积的相位差变化。由此式可以看出,△T的测量误差取决于HP5370B的时间间隔测量分辨率,最小为±20ps,也就是在ls闸门时间内相对晶振频率准确度为±2×10-11,但是随着采样时间r的增大,测量误差可以大大的减小,精度也不断提高。
由于天气等原因,对接收机工作有影响,所以做实验时适当选择比较好的天气。取样时间设定为40s,OCX0石英晶体振荡器在系统运行3小时后即进入锁定状态,开始对晶体振荡器锁定状态下与铯原子频标进行相位比对测试,记录系统连续工作10小时的数据,图5.2为OCXO晶振的频率准确度随时间的变化曲线。
从图5.2中可以看出,锁定后OCXO晶振的频率值在标称频率上下起伏,最大起伏约为9.0×10-11。通过计算,图5.2中所显示的频率平均准确度达到73×10-12,相对于所采用晶体振荡器的约5×10-10/d的老化率有明显改进,同时也说明晶振频率的漂移得到了一定程度的修正。
在进行石英贴片晶振频率稳定度测试时,由于实验室测频仪器测量的分辨率的有限,ls和10s的稳定度由直接测频法计算得到,而100s、1000s、5000s和10000S由比相间接测频法计算得到,相位比对数据采用上面图5.2中所采集的数据。锁定后, OCXO的频率稳定度测试结果如表5.1所示:
从表51中可以看出,锁定后的OCXO恒温晶体振荡器的短期稳定度基本保持了其本身的指标,而其中长期稳定度不是非常理想,这是由lPPS中存在的中长期相位漂移以及Kalman滤波和PID控制参数还不是很合理造成的,但总体较其本身指标,有一定程度的提高。因此,后续工作需要增大滤波时间常数,进一步继续优化 Kalman滤波和PID控制模型的参数,使得 Kalman滤波的收敛值更小,对OCXO晶振频率的调整幅度和频度更低。
高精度的时间测量是实现驯服保持的基础,一般都使用比时法测频差的方法实现对OCXO晶振的锁定,其中最常用的方法就是直接计数法,即在有待测时间间隔构成的闸门信号中填入脉冲,通过必要的计数电路,得到填充脉冲的个数后再乘以填充周期便可计算出待测的时间间隔。但是这种方法的测量精度很低,主要取决于填充脉冲的频率,频率越高测量精度越高,但在实际应用中,这会大大提高对相应器件和线路的要求,同时还存在±1个字的量化误差,直接计数法如图4.3
所示:
其它常用的时间间隔测量方法还有模拟内插法、游标法、量化延迟法、时间幅度转化法,虽然这些方法都具有很高的测量分辨率,但是它们的测量范围都很小,于是考虑将直接计数法和上述某一种高分辨率测量方法相结合的测量方法, 从而可以同时兼顾到测量分辨率和测量范围。
本文采用将直接计数法和时间一幅度转化法相结合的时间间隔测量方法,对时间间隔闸门首先用直接计数法计数,由图43所示,T为被测时间间隔值,T为由直接计数法计算得到的时间间隔测量结果,T和T2分别代表代表时间间隔的开始信号和结束信号与计数时钟信号之间的不同步部分,即直接计数法中存在的石英晶振量化误差部分,而这两部分短时间间隔值由采用时间一幅度转换法来测量。因此被测时间间隔值可由下式计算得到:
TX=TN+T1-T2 式(4-1)
由于输入到时间间隔测量模块的两信号为来自GPS接收机的IPPS信号和OCXO晶振分频得到的1Hz信号,分别以待测闸门的上升沿和下降沿作为短时间间隔T和T的开门信号,以紧随它们的第一个填充信号的上升沿和下降沿作为关门信号。
因为填充脉冲为OCXO石英晶体振荡器输出的10MHz信号,理论上1Hz信号和填充脉冲的上升沿是严格对齐的或者有一个固定的相位差,所以可以认为结束信号与填充脉冲之间的相位关系不再是随机的,而是相关的。也就是在该系统中只需考虑待测时间向间隔开门后的短时间间隔T,而不必考虑关门后的短时间间隔T2,所以待测时间间隔变为T=T+T1,时间一幅度转换法的原理图如图4.4所示同。
具体电路实现时采用CPLD和带有AD转换器的单片机MSP430F247)以及外围的电流源电路、高度开关、放电MOS管等构成,充放电电路如图45所示。
CPLD用于取出直接计数法中计数时钟信号和代表被测时间间隔闸门的开始信号和结束信号之间的不同步部分,并将它们转化为窄脉冲输出。当短时间间隔脉冲CH1的开门信号输入到三极管Q1的基极时,用+5V的直流电源对电容进行充电,以实现时间一幅度初步转换;当短时间间隔闸门的关门信号到来时,三极管截止,停止充电并保持充电电压。
晶振信号调理电路将其幅度调理到单片机AD转换器的输入范围内后送入单片机的AD转换器进行转化,完成转化后向效应管BS170发出个复位信号CH_2,使场效应管导通,电容迅速放电,为下一次测量做好准备最后单片机根据AD转换结果,计算出对应的时间间隔值,从而完成了一次完整的测量过程。
这种方法的优点是测量分辨率高,转换时间短。但不足之处就是转换存在非线性误差,因此使用前需要对其校准,将时间间隔随时间变化的两路不同源信号同时输入测量模块和HP5370B,进行测量范围内的约40点逐点校准,而后将校准数据存入单片机自带的Fash存储器,测量时査表并线性拟合得到结果,该区间内根据式(4-2)按线性关系计算该电压值所对应的短时间间隔值T1.
其中U为AD转换得到的电压值,Um和U-分别为所对应电压区间的上限电压值,Tm和T分别为Um和Um所对应的标准时间间隔值,这样就在一程度上减小了非线性误差。
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.

石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置