在前面的文章中我们知道激光具有高亮度、高单色性、高相干性、高方向性等四大优点,尤其是它具有极高的功率密度,可达1010-12w/CM2,因而是一种性能优异的加工光源。因此我们通过将激光微加工工艺应用于石英晶振频率微调,并通过理论与实验证明。
激光微加工”和其它微加工方法相比具有明显的优越性,表现为以下几方面:
(1)加工制作条件较易得到满足:
尽管“电子束”、“X射线”、“离子束”具有更短的波长,在提高分辨率方面有更多的好处,但它们在“曝光源”、“掩膜”、“抗蚀剂”、“成像光学系统”等方面都存在极大的困难,与此相比,激光有着明显的经济性和现实性。随着新型激光器的发展,它可将加工波长扩展至DUV和VUV,分辨率达到亚微米。
(2)功率密度高:
激光加工的功率密度可达108~109W/cm2,大大缩短了晶振产品加工时间。
(3)加工对象广泛
“激光微加工”可用于多种材料的精密加工,如金属、有机物、无机物、陶瓷等,在加工的过程中可控制激光的切削尝试,这使得利用激光进行高精密切削成为可能。
目前,“激光微加工”的应用领域比较广泛,主要包括以下几方面:
(1)精密打孔:
激光精密打孔可对各种材料进行打微孔的加工。目前,激光打孔已广泛应用于金刚石模具、钟表石英,贴片晶振,轴承小孔的加工,它也可用于对陶瓷、橡胶、塑料等非金属材料的精密打孔。
(2)精密切割:
激光精密切割的切缝窄,切缝边缘质量高,切割速度快,几乎没有残渣。在切割金属时可采用吹氧工艺使金属表面氧化而增强对激光的吸收能力;在切割非金属时采用吹惰性气体的方法排除熔融物。
(3)电阻电容的微调:
激光微调就是用激光束按一定的轨迹在膜片上照射,使膜层达到气化温度而迅速蒸发,减少了电阻膜的导电面积从而达到改变膜片电阻值的目的。电阻微调分薄膜电阻微调和厚膜电阻微调两种。薄膜电阻膜厚为几百埃至几微米,常用镍铬等合金材料,厚膜电阻膜厚为几微米至几十微米。它还可以用于电子线路或石英晶振等电子器件的功能微调,如有源滤波器的中心频率、带宽和增益的微调,运算放大器失调电压的微调等。电阻电容的微调一般采用YAG固体激光器。
(4)精密焊接
精密焊接加热速度快、焊点小、焊缝窄、热影响区小,因而焊接变形小、精度高且无需真空设备。它能对绝缘体直接焊接、能焊接有色金属及异种金属,它还可进行薄片间的焊接、丝与丝间的对焊及缝焊。激光精密焊接特別适用于微型、精密、排列紧密和热敏焊件。广泛应用于微电子元件如集成电路内外引线的焊接、电子器件管壳封焊、热电偶的焊接、仪表微丝焊接等领域.
如果将石英晶体置于交变电场中,则在电场的作用下,晶体的体积会发生周期性的压缩或拉伸的变化,这样就形成了晶体的机械振动,晶体的振动频率应等于交变电场的频率,在电路中也就是驱动电源的频率。当石英晶振晶体振动时,在它的两表面产生交变电荷,结果在电路中出现了交变电流,这样压电效应使得晶体具有了导电性,可以视之为一个电路元件。
石英晶体本身还具有固有振动频率,此振动频率决定于石英晶振晶体的几何尺寸、密度、弹性和泛音次数,当晶体的固有振动频率和加于其上的交变电场的频率相同时,晶体就会发生谐振,此时振动的幅值最大,同时压电效应在石英晶体表面产生的电荷数量和压电电导性也达最大,这样晶体的机械振动与外面的电场形成电压谐振,这就是石英晶体作为振荡器的理论基础。
石英晶振晶体的电气特性可用图中所示的等效电路图来表示,由等效电阻R1、等效电感L1和等效电容C1组成的串联谐振回路和静态电容Co并联组成,静态电容C0主要由贴片晶振,石英晶体的尺寸与电极确定,再加上支架电容组成。等效电感L1和等效电容C1由切型、石英晶体片和电极的尺寸形状来确定。等效电阻R1是决定石英晶振Q的主要因素,是直接影响石英谐振器工作效果的一个重要参数。R1不仅由切型、石英晶体片形状、尺寸、电极决定,而且加工条件、装架方法等对其影响也很大。因此,同一型号,同一频率的若干产品其Q值也相差很大。
在等效电路中,L1和C1组成串联谐振电路,谐振频率为:
通常石英晶体谐振器的阻抗频率特性可用图2.3表示。此处忽略了等效电阻R1的影响,由图可见,当工作频率f
接着前面的文章我们继续分析基于晶振的微力传感器的发展.有不懂的问题可以到CEOB2B晶振平台晶振技术资料中查看,有关石英晶振的各种型号,参数信息均可查到.
非接触模式是控制探针在样品表面上方扫描,始终不与晶振样品表面接触因而针尖不会对样品造成污染或产生破坏,避免了接触模式中遇到的一些问题。针尖和样品之间的作用力是很弱的长程作用力一范德华吸引力。非接触模式是测量长程力所采用的方法,其分辨率比接触模式的分辨率要低,由于针尖很容易被表面吸附气体的表面压吸附到样品表面,造成图像数据不稳定和对样品的破坏。因此非接触模式操作实际上较为困难,并且通常不适合在液体中成像。
轻敲模式介于接触模式和非接触模式之间(13l。其特点是扫描过程中微悬臂也是振荡的并具有比非接触更大的振幅(大于20nm),针尖在振荡时间断地与样品接触。由于针尖与晶振等样品接触,分辨率几乎和接触式扫描一样的好,但由于接触是短暂的,因此对样品的破坏几乎完全消失,克服了常规扫描模式的局限性。轻敲模式还具有大而且线性的操作范围,使得垂直反馈系统具有高度稳定性,可重复进行样品测量。对于软、粘和脆性样品的研究具有独到的优势但轻敲模式同样也增加了操作和设备的复杂性,在实际运用中存在着不易控制的缺点。
SFM技术的发展强烈依赖于带有特殊针尖的微悬臂制备技术的发展13-15。这种微悬臂和针尖必须是能够简便而快速制备的。在原子力显微镜发展之初,悬臂几何形状一般为L形。其主要是通过将一个很细的金属丝或线圈弯曲90°后,顶端经电化学腐蚀成一个针尖而制备得到的。这种制备方法完全依赖于实验技师的手工技能。第二种悬臂制备方法是微刻技术。第一代是简单的SiO2悬臂,形状为直角和三角,是从氧化硅片上刻蚀得到的。其同腐蚀金属针尖相比,不能很好的控制其尖锐程度。后来改用SiN4代替SiO2作为悬臂材料。Si3N4脆性较低,而且厚度可以从1.5降到0.3um。这一代悬臂具有完整针尖,而且曲率半径非常低。
美国斯坦福大学是在硅片上刻蚀出金字塔形的小片,可以得到曲率半径小于30nm的针尖。IBM公司则采用硅片(100)来制备具有完整针尖的硅悬臂,曲率半径低于100nm。这些通过微电子加工将针尖集成于一体的微悬臂方法有很好的可重复性,不需粘另外的针尖,便于大批量生产。所以一般商用的AFM都采用这种力传感器。但对于静电力显微镜和磁力显微镜来说,由于针尖材料具有特殊的要求,还是要采用在微悬臂上粘针尖的方法。
从以上可以看出,这些基于微悬臂的SFM它们都有一个共同的缺点;它们不仅需要一个结构复杂的微小悬臂作为力的传感器,而且还要一个激光干涉仪用于检测微悬臂的微小位移来获得表面变化信息。因而结构较为复杂,成本也很高,操作难度增大,也就造成其在应用中的局限性。所以必须采用其他的传感器和非光学的检测方法。
我们接着前面介绍到的石英晶振片的由来以及工作原理,我们接着说石英晶振晶片的电极对膜厚监控、速率控制至关重要。目前,市场上提供三种标准电极材料:金、银和合金。
金是最广泛使用的传统材料,它具有低接触电阻,高化学温定性,易于沉积。金最适合于低应力材料,如金,银,铜的膜厚控制。用镀金晶振片监控以上产品,即使频率飘移IMHz,也没有负作用。然而,金电极不易弯曲,会将应力从膜层转移到石英基片上。转移的压力会使晶振片跳频和严重影响质量和稳定性。
银是接近完美的电极材料,有非常低的接触电阻和优良的塑变性。然而,银容易硫化,硫化后的银接触电阻高,降低晶振片上膜层的牢固性。
银铝合金晶振片最近推出一种新型电极材料,适合高应力膜料的镀膜监控,如siO,SiO2,MgF2,TiO2。这些高应力膜层,由于高张力或堆积的引]力,经常会使晶振片有不稳定,高应力会使基片变形而导致跳频。这些高应力膜层,由于高张力或堆积的引力,经常会使贴片晶振,石英晶振片有不稳定,高应力会使基片变形而导致跳频。银铝合金通过塑变或流变分散应力,在张力或应力使基体变形前,银铝电极已经释放了这些应力。这使银铝合金晶振片具有更长时间,更稳定的振动。有实验表明镀Si02用银铝合金晶振片比镀金寿命长400%。
镀膜科技日新月异,对于镀膜工程师来说,如何根据不同的镀膜工艺选择最佳的晶振片确实不易。下面建议供大家参考
(1)镀低应力膜料时,选择镀金晶振片
最常见的镀膜是镀A、Au、Ag、Cu,这些膜层几乎没有应力,在室温下镀膜即可膜层较软,易划伤,但不会裂开或对基底产生负作用。建议使用镀金晶振片用于上述镀膜,经验证明,可以在镀金晶振片镀60000埃金和50000埃银的厚度。
(2)使用镀银或银铝合金镀高应力膜层
NiCr、Mo、Zr、Ni-Cr、Ti、不锈钢这些材料容易产生高应力,膜层容易从晶体基片上剥落或裂开,以致出现速率的突然跳跃或一系列速率的突然不规则正负变动。有时,这些情况可以容忍,但在一些情况下,会对蒸发源的功率控制有不良作用。
(3)使用银铝合金晶振片镀介质光学膜
MgF2、SiO2、A2O3、TiO2膜料由于良好的光学透明区域或折射率特性,被广泛用于光学镀膜,但这些膜料也是最难监控的,只有基底温度大于200度时,这些膜层才会与基底有非常良好的结合力,所以当这些膜料镀在水冷的基底晶振片上,在膜层凝结过程会产生巨大的应力,容易使晶振片在1000埃以内就回失效。
石英晶振在如今产品中的应用变得尤为重要,为了更好的使用晶振,我们除了要知道晶振的生产材料,晶振使用型号参数等一些条件之外,关于晶振的使用注意事项,以及石英晶振,贴片晶振晶片的一些关注点也应该知道.在前面的文章中CEOB2B晶振平台介绍了晶振晶片的由来以及其工作原理,下面我们要介绍的是膜厚控制仪用电子组件引起晶振片的高速振动和晶振监控的优缺点.
膜厚控制仪用电子组件引起晶振片的高速振动,约每秒6百万次(6MHz),镀膜时,测试每秒钟振动次数的改变,从所接受的数据中计算膜层的厚度。为了确保晶振片以6MHz的速度振动,在真空室外装有“振荡器”,与晶控仪和探头接口连接,振荡器通过迅速改变给晶振片的电流使晶振片高速振动。一个电子信号被送回晶控仪。晶控仪中的电路收到电子信号后,计算晶振片的每秒振速。这个信息接着传送到个微处理器,计算信息并将结果显示在晶控仪上:
(1)沉积速率(Rate) (埃/秒)
(2)已沉积的膜厚( Thickness) (埃)
(3)晶振片的寿命(Lie) (%)
(4)总的镀膜时间(Time) (秒)
更加精密的设备可显示沉积速率与时间的曲线和薄膜类型。
石英晶振监控的优缺点
◆优点:
1.晶振法是目前唯一可以同时控制膜层厚度和成膜速率的方法。
2.输出为电讯号,很容易用来做制程的自动控制。
3.对于厚度要求不严格的滤光片可以利用作为自动制程镀膜机。
4.镀金属时,石英监控较光学监控来的方便精确。
◆缺点
1.厚度显示不稳定。
2.只能显示几何厚度,不能显示折射率。
3.一般精密光学镀膜厚度只用做参考,一般用作镀膜速率的控制。
◆所以一台镀膜设备往往同时配有石英晶体振荡器监控法和光学膜厚监控法两套监控系统,两者相互补充以实现薄膜生产过程中工艺参数的准确性和重复性,提高产品的合格率。
正是这样丰富的32.768K晶振才给我们很多电子产品出现创造条件,但是当我们还沉浸在稀里糊涂的32.768K石英晶体谐振器中时,32.768K石英晶体振荡器又出现在我们眼中,瞬间只能觉得自己整个人不好,快被32.768K晶振弄晕乎了。32.768K有源晶振我们暂且不说,但32.768K无源晶体相信每位接触晶振的朋友都知道它,并且32.768K无源晶振出现的时间是石英晶振中最早最久的,但并不是说我们每个人都已经透彻的了解它了。不相信,那就来看看下面这些小知识你是否都知道呢?
在前面的文章中我们了解到了GPS的应用以及高精密石英晶体振荡器在GPS内部所提供到的作用,GPS晶振的工作原理等等。晶振的作用随着科技的发展到如今已是无处不在,各种大大小小的智能科技产品都会用到石英贴片晶振.接下来我们要说到的是GPS信号失效后保持算法的研究以及与晶振之间的联系.
从前面文中介绍GPS接收机的相关介绍可知,1PPS信号可能在多种因素的作用下丢失。如果通过解码发现失效,应立即停止以它作为基准来驯服OCXO晶振,否则可能对OCXO晶振产生误调整,使系统产生很大的误差,但是这时OCXO晶振的输出频率精度会由于老化和温度等因素的影响而不断降低。为了解决这一问题,采用保持算法, 即在正常锁定过程中,实时记录晶振的频率随时间的漂移率,即确定石英晶体老化率曲线,再利用温度传感器,建立温度和频率漂移率的函数关系。当GPS信号失效后,根据以前正常驯服状态下记录的历史数据,通过合理的算法对OCXO晶振输出频率的变化趋势做出准确预测,进而在此基础上实现对频率误差的实时校正,以保证输出频率精度在可容忍的精度范围内,直到GPS信号恢复后再继续锁定晶振。
OCXO石英晶体振荡器的老化模型是非线性的,而其频率温度变化模型则可认为是线性的,并且可以利用 Kalman滤波器来对这两种模型的参数进行估计,进而可以实现GPS信号失效后OCXO晶振频率的预测校正。然而老化率的非线性是对于较长时间而言的,在短时间内比如说一天,老化模型也可以被简化为线性,这大大方便了算法上的处理关于OCXO石英晶体振荡器的驯服保持模型的原理框图如图5.3所示
图中的三个开关S1、S2、S3在卫星工作状态正常时均处于开启状态,OCX0石英晶体振荡器直处于驯服状态,并且预测模型一直处于工作模式。如果系统经过判断确定卫星信号丢失,而且当时已经完成锁定,系统便会处于保持模式,三个开关均闭合, 这样老化和温度预测模型可以根据其预测的结果并以自己本身的输出作为观测量的输入来实现频率偏差的预测。预测模型的最终输出是出四项叠加而成:驯服的初始校正量、老化模型的预测输出、温度影响模型的预测输出和温度模型的延迟补偿量.
为了实现1PPS信号失效后的保持,必须先将由老化和温度变化引起的影响量分离开来,而分离算法的确定与这两种影响的性质有密切关系。一般认为老化的影响属于慢变,而温度的影响则相对变化较快,即在频域,老化的影响处于低频段,温度的影响处于较高的频段,这样就可以将它们分离开来,即采用不同类型和带宽的数字滤波器就可以实现这两种影响的分离国,ⅢRF、IRF2和RF为滤波器, 其中IRF和IRF3为1阶的低通滤波器,IRF2为3阶的低通椭圆滤波。
图中的IRF1是用来同时通过锁定状态下由温度变化引起的校正量中的高频变化部分和老化引起的低频变化部分,其带宽应该由高频分量确定。在一般的应用环境下,温度的最大变化率可以达到10℃h,而这里所采用的OCXO贴片晶振的线性频率温度系数为6~8ppb/40℃,于是可以得到最大温度变化率引起的频率漂移率达到4.17~5.56×10-4ppb/s。所以IRF的带宽被设计为3×10-3ppb/s(3mHz),即是最大频率温度漂移率的5.4倍,这样就可以通过所需要的信号,并且针对校正信号中由GPS接收机引入的高频噪声,进行每10倍频10dB的衰。
IRF2用于从经过RF滤波后的校正量中分离出老化的影响,那么其带宽由反映老化的低频分量决定。这里采用的OCXO晶振的老化率为0.5ppbd或者58×10-6ppb/s,所以IIRF2的带宽被设计为3×10-5ppbs(0.03mHz),即为秒老化率的5.2倍,并且其阻带衰减最小为50dB,带内波动为1.5dB,这样可以较好的过滤掉温度的影响。IRF2的输出直接输入给了老化的 Kalman预测模型,并且将其从IRFl的输出中减掉,可以提取出温度的影响。
IRF用和RF完全相同的设计,主要用来进一步抑制GPS接收机引入的噪声和消除IRF2输入输出信号的数字相减带来的毛刺。由于IRF1和IRF2处于温度影响预测模型的输入通道上,会使得校正量的预测产生延迟,使预测滞后于IRFl的输入信号。因此有必要在温度预测模型的输出加上一个延迟补偿模块,由它在保持模式时计算出相应的补偿量,并叠加到预测模型的输出信号上来消除延迟的影响。这里的延迟补偿量由温度预测模型输出的变化率和滤波器的延迟量相乘来得到,而滤波器的延迟量的最优估计为个小时,温度预测模型输出变化率由其输出对于时间的一阶微分的100点滑动平均来得到,其中每秒采集一个数据。
在进行系统测试时,被锁晶振采用高稳定度恒温晶体振荡器(10MHz±3Hz),GPS接收机选用LASSEN IQ型,采用5585B-PRS型铯原子频标作为频率参考,该铯原子频标可输出10MHz信号,具有较好的频率准确度及稳定度,其频率准确度优于5×10-12,秒级频率稳定度优于1×10-11/s。
采用相位比对的方法来测试被锁石英晶振的相对频率准确度,测试连接图如图5.1所示。将被锁定的晶体振荡器的10MHz频率信号和铯原子频标产生的10MHz频率信号分别作为开关门信号输入到精密时间间隔测试仪HP5370B(分辨率为20ps) 进行比对测试,HP5370B输出的时间间隔值与两个比对信号的相位差成正比。该时间间隔值的变化反映了两个信号的相位差的变化。计算相对频差的公式为:
其中,τ为取样周期;△T为在取样周期τ内两信号累积的相位差变化。由此式可以看出,△T的测量误差取决于HP5370B的时间间隔测量分辨率,最小为±20ps,也就是在ls闸门时间内相对晶振频率准确度为±2×10-11,但是随着采样时间r的增大,测量误差可以大大的减小,精度也不断提高。
由于天气等原因,对接收机工作有影响,所以做实验时适当选择比较好的天气。取样时间设定为40s,OCX0石英晶体振荡器在系统运行3小时后即进入锁定状态,开始对晶体振荡器锁定状态下与铯原子频标进行相位比对测试,记录系统连续工作10小时的数据,图5.2为OCXO晶振的频率准确度随时间的变化曲线。
从图5.2中可以看出,锁定后OCXO晶振的频率值在标称频率上下起伏,最大起伏约为9.0×10-11。通过计算,图5.2中所显示的频率平均准确度达到73×10-12,相对于所采用晶体振荡器的约5×10-10/d的老化率有明显改进,同时也说明晶振频率的漂移得到了一定程度的修正。
在进行石英贴片晶振频率稳定度测试时,由于实验室测频仪器测量的分辨率的有限,ls和10s的稳定度由直接测频法计算得到,而100s、1000s、5000s和10000S由比相间接测频法计算得到,相位比对数据采用上面图5.2中所采集的数据。锁定后, OCXO的频率稳定度测试结果如表5.1所示:
从表51中可以看出,锁定后的OCXO恒温晶体振荡器的短期稳定度基本保持了其本身的指标,而其中长期稳定度不是非常理想,这是由lPPS中存在的中长期相位漂移以及Kalman滤波和PID控制参数还不是很合理造成的,但总体较其本身指标,有一定程度的提高。因此,后续工作需要增大滤波时间常数,进一步继续优化 Kalman滤波和PID控制模型的参数,使得 Kalman滤波的收敛值更小,对OCXO晶振频率的调整幅度和频度更低。
GPS介绍及恒温晶体振荡器OCXO模型建设
导航星全球定位系统 NAVSTAR/GPS Global Navigation Satellite Timing and Ranging Positioning System/Global Positioning System,简称GPS)是一个全新体制的定位定时系统,是可供全球共享的具有很高应用价值的空间信息资源,已经成为目前世界上应用范围最广、实用性最强的全球精密授时、测距和导航定位系统.
如图2.1所示。
GPS系统组成:全球定位系统(GPS)出3个部分组成:卫星星座,地面控制/监视网络和用户接收设备,也称其为空间部分、地面支撑系统、用户设备部分。
空间部分:空间为GPS卫星星座,由24颗GPS导航星组成(其中21颗工作3颗备均匀配置在6个与赤道夹角为55°的近圆形轨道上,轨道夹角为60°,这些卫星发播的信号能覆盖全球各个角落。这样可以保证全球任何地方的用户能在任何时刻观测到5~8颗GPS卫星,这些卫星工作在两种频率下:1575.42MHz和1227.6MHLz,卫星上均有遥测遥感天线,用于与地面监控系统通讯,每颗卫星都带有两台小型铯或氢原子钟(稳定度达2×10-13~1×10-14)、微型计算机、电文存储器和数据接收与发射设备,并且由太阳能电池及后备镉镍电池提供电源。
地面测控部分:由五个地面监测站、数据注入站和一个主控站组成。主控站位于科罗拉多州的联合空间执行中心,三个注入站分别设在大西洋的阿松森岛、印度洋的狄哥·伽西亚和太平洋的卡瓦加兰,五个监控站设在主控站、三个注入站和夏威夷岛,其示意图如图2.2。
主控站昼夜不停地自动分析处理来自个监测站地数据,编算出每个卫星的星历和GPS时间系统,将预测的卫星星历、钟差以及状态数据,然后把这些修正数据传送到数据注入站,由注入站再把修正数据分别发送递给相应的卫星。主控站还负责纠正卫星的轨道偏离,必要时调度卫星,让备用卫星取代失效的工作卫星。
五个监测站的主要任务是对每个卫星进行观测,并向主控站提供观测数据。每个监控站配有GPS接收机(这里对于石英晶振应用的要求就高了),对每个卫星进行常年连续不断的测量,每6秒进行一次伪距测量和多普勒观测、采集气象要素等数据。监测站是一个无人值守的数据采集中心,受主控站的控制,定时将观测的数据传送到主控站。五个监控站分布在全球范围,保证了GPS精密定轨的要求。对卫星的监视加注,每天至少要进行一次。通过这样的加注办法来补偿卫星钟的步调差和信号传播(GPS贴片晶振)过程中的变化,使卫星钟与GPS主钟之间保持精密的同步。
使用传统AT切割晶体封装方法的音叉石英晶振亦能以4.1毫米×1.5毫米、3.2毫米×1.5毫米及2毫米×1.2毫米这样的小尺寸供货。目前主要的目标是将这类石英音叉的厚度推向0.4毫米或更薄,以供轻薄型产品使用。预计在几年后,即会出现需要更小尺寸石英晶体(1.6毫米×1毫米及1毫米×0.8毫米)的应用,而石英晶体制造商正对此进行相应准备。
当离子枪使用时间过长使离子枪内部积碳、操作员在清扫真空腔时有异物掉入离子枪内、或因为离子枪冷却不良都会造成离子枪出力不稳定,使不良品数量增加。例如,如图4-1l1所示,当离子枪工作正常,出力稳定时,离子枪的实际刻蚀速度(设备根据设定的各参数计算出离子枪beam电压、放电电流并供给离子枪。离子枪在获得这些电压、电流后实际输出的离于束,对石英晶振晶片刻蚀的速度。
当离子枪工作不正常时,实际工作电压、电流也会与计算值产生很大偏差,因此就不能获得相应电流密度的离子束,使得刻蚀速度发生变化)等于设定的速度时,设备根据加工前测定的频率和设定的刻蚀速度计算出的加工时间与实际需要加工的时间相等,经过该时间的加工后可以达到目标频率。当离子枪的实际刻蚀速度大于设定的速度时,则计算出的加工时间大于实际需要加工的时间,此时,经过该时间的加工后,频率必然大于目标频率,而产生F+不良。
离子枪出力不稳定的处理方法
在实际生产中,离子枪的工作状态会逐渐变差。因此操作员遇到少量不良品的出现,不会意识到离子枪已发生异常,而是调整一些参数继续生产,直到出现大量不良品,通过调整参数也无法进行生产时才联系维修人员进行修理和保养。这样,不但会使离子枪长期处于不安定的状态,而且经常出现不良品。为此,本文通过前面的理论知识,利用公式(4.2)和(4.3)针对A品种的石英贴片晶振制作了一个简单的程序,界面如图4-12。
当操作元将制品放入设备中共,开始刻蚀加工时,只要输入设备仪表上的监控电压和电流,就可以知道现在的离子束刻蚀速度。只要与设定的刻蚀速度比较一下,当两速度相差较大时,便可知道离子枪已工作在不安定状态,应及时联系维修人员进行维修或保养。这样可以避免大量不良品的发生。
快时代的今天网络通信是不可缺少的,卫星网络的全面覆盖不仅使得信息更快速的传达交流,还诞生了各式各样的为人们提供生活方便快捷的网络平台,支付宝微信的盛行使得无现金快捷支付成为可能,淘宝美团滴滴打车更让大家衣食住行显得更加方便快捷提供方便。而在卫星网络通信中晶振又是不可缺少的重要功臣,在声表面谐振器与声表面滤波器等SAW声表面波器件还未诞生前,陶瓷滤波器是主要的网络通信用晶振,但陶瓷滤波器存在着各种弊端,而这些弊端随着科学技术的发展显得更加突兀不足,因此科学家们往更高的晶振领域探索,声表面波器件也因此开始一步步进入科技领域。
石英晶振离子刻蚀频率微调方法
图4-1是基于石英晶振离子刻蚀技术的频率微调示意图,离子刻蚀频率微调方法,当照射面积小于2~3mm2,在beam电压低于100V以下就可获得接近10mA/cm2的高电流密度的离子束,离子束的刻蚀速度在宽范围內可进行调节。图中采用的是小型热阴极PIG型离子枪,放电气体使用Ar,流量很小只需035cc/min。在:圆筒状的阳极周围安装永久磁石,使得在轴方向加上了磁场这样的磁控管就变成了离子透镜,可以对离子束进行聚焦。热阴极磁控管放电后得到的高密度等离子,在遮蔽钼片和加速钼片之间加高达1200V高压后被引出。并且可以通过对热阴极的控制调整等离子的速度。
用离子束照射石英晶振的电极膜,通过溅射刻蚀使得频率上升米进行频率微调。
在调整时,通过π回路使用网络分析仪对石英晶振的频率进行监控,当达到目标频率后就停止刻蚀,调整结束。
因为石英晶振与π回路之间用电容连接,离子束的正电荷无法流到GND而积聚在石英晶片上,使石英晶振晶片带正电荷。其结果不仅会使频率微调速度降低,而且使石英晶片不发振,无法对石英晶振的频率进行监控和调整。为此,必须采用中和器对石英贴片晶振晶振片上的正电荷进行中和。
在进行离子刻蚀频率调整时,离子束对一个制品进行刻蚀所需的时间为1~2秒, 而等待的时间约2秒,等待时间包括对制品的搬送和频率的测量时间。在等待时间中, 是将挡板关闭的。如果在这段时间内,离子枪继续有离子束引|出,则0.5mm厚的不锈钢挡板将很快被穿孔而报废。为此,在等待时间内,必须停止离子枪的离子束引出。
可以用高压继电器切断离子枪的各电源,除保留离子枪的放电电源(可维持离子枪的放电稳定)。这样,在等待时间没有离子束的刻蚀,使挡板的使用寿命大大增长。同是,出于高压继电器的动作速度很快,动作时间比机械式挡板的动作时间少很多,所以调整精度也可得到提高。
石英晶振中有有源晶振和无源晶振之分,并且有源晶振不仅在外观尺寸上表现的多样化,在功能运用上也是复杂多样的。都知道有源晶体振荡器比无源石英晶体精准度高,温度稳定性强不易发生频飘等现象。且石英晶体振荡器大多是四个脚位以上采用金属外封装的,一般情况下在有源晶振表面都有一个小圆点,这个小圆点对应的脚位被称为脚一,而其他脚位命名则从1脚开始按顺时针方向命名区分。
在前面的文章中我们介绍了石英晶振的由来,工作原理,以及晶振频率的微调研究,离子束加工原理等技术资料,接下来CEOB2B晶振平台要给大家介绍的是晶振离子束刻蚀设备.
离子束刻蚀需要使用适当的电压和电流将某种气体电离成离子,然后对其进行聚焦和加速,使之形成高能的离子束对工件进行加工。这些过程在大气压状态是无法完成的,所以离子刻蚀加工必须在高真空环境中进行。为此石英晶振离子束刻蚀设备必须包括真空腔和排气系统。此外,为了产生高能离子束还必须有离子源以及控制离子源的电源系统。最后,根据加工的石英贴片晶振和目的不同,还需要配备不同的监测系统和控制系统。
3.3.1离子
离子源也称离子枪,是产生高能离子束的装置。因此,离子源是这个离子刻蚀设备的核心。离子源的工作状态决定着整个石英晶振晶体设备的工作效率和刻蚀精度。并且,在不同的应用中,离子源的种类也各不相同。为此,在实际应用中,一般用以下参数来衡量离子源的性能:
1.束流强度和束流密度。离了束的离子流的大小称为束流强度,用Ⅰ表示。离子束的单位面积上的离子流大小称为束流密度,用J表示。当离子束的横截面是S,则: I=JS。当其他因素不变时,束流强度或束流密度增大时,离子刻蚀的能力就增大。
2.离子束的尺寸和张角。离了束的尺是指离子束直径的大小。离子束的张角则是指当使用的宽离子束是汇聚束或发散束时的收敛角或发散角。或者细直径离子束的束救角。
3.气体利用率。也就是气体输入离子源后,经过电离、聚焦和加速后能成为有效离子的百分比。
4.功率和效率。效率是指高子源输出的高能离子束的能量与输入离子源的能量的比。在石英晶振,石英晶体振荡器实际应用中,为了提高能源的利用率,必须尽可能的提高离子源的效率。
5.离子源的运行特性。运行特性用于衡量离子源工作的稳定性和可靠性。保证设备能够安定的生产。
3.3.2工作腔
真空腔的大小要适中或者将真空腔分为加工室和准备室,加工室一直保持高真空。这样可以减轻真空泵的负担减少抽真空所需的时间。另外,在真空腔中需安装摆放石英晶体,贴片晶振等工件的工作台。工作台的移动可以通过马达或R0B0T控制,以便调整离子束与工件的位置。当马达在真空腔外时,还必须保证转动轴的真空密封性。避免由于转动轴处发生空气泄露,破坏加工的真空环境,影响晶振加工的品质。同时空气泄露后会加重真空泵的负担,如果是湿泵还容易加速真空油的劣化,缩短真空泵的使用寿命:工作台和离子源按不同应用可以分别配备水冷循环系统,对工件与离子源进行降温,以保证石英晶振的品质与离子源的出力稳定。最后,真空腔还应有一个观察窗口,以便观察加工的情况。
3.3.3排气系统
排气系统一般分两段对真空腔进行排气,先用油旋转泵等低真空泵排气,使真空度达到0Pa左右,然后用油扩散泵等高真空泵排气,使得真空腔达到各种加工所要求的高真空度。一般情况下,真空腔的本底真空度应高于103Pa,这样可以避免真空腔内混入过多的其他气体分子和水蒸气,这些气体分子和水蒸气不仅对离子源出力的稳定产生影响,还会污染石英贴片晶振工件,降低产品品质。此外在使用油扩散泵时,还必须在泵前加装冷凝阱防止油蒸汽付真空腔的污染。
3.4离子束刻蚀的应用
离子束蚀具有多项优点:入射离子的方向性很强,刻蚀分辨率高,能刻蚀任何材料,一次能刻蚀多层材料,刻蚀在高真空中进行,刻蚀过程不易受污染。因此被广泛应用于电子工业、生物医疔等行业中.
首先,出于离子束刻蚀具有上述优点,在电子工业中特别适合于对半导体元件的引线制作和图形刻蚀,以及石英晶振晶片的减薄加工。其次,在生物医疗应用中,可以将人造器官的表面刻蚀成特定的结构,使人体的组织在其表面容易生长。另外,在电子显微镜和做表面分析用的试样制备中,出于离子束刻蚀使用物理的撞击效应和溅射效应,并且分辨率高容易控制,因此可以制成无化学污染的高质量的试样。
要说现在科技社会最火热的还是电子科技产品,不仅热销更新换代的速度也是令人咂舌,这里面缺不了晶振这类电子元器件的助阵,但也正是这些火热的电子科技产品才使得目前全球整个的晶振市场沸腾翻涌。当然不要只以为独有进口晶振在那里一枝独秀,国产晶振近些年也是快马加鞭迎赶着科技高速发展的好时机,国内众多晶振厂家不断崛起,一些晶振厂家不仅自己生产石英晶振等,还得到了其他全球知名晶振品牌的青睐取得了相应的产品代理权限。
石英晶振频率微调国内外研究现状
石英晶体元器件的生产从晶片的切割到成品包装。在整个工艺流程中,以下几个工序主要影响着产品的频率。
1.晶振晶片的制作,根据目标频率制作出相应切割方位、尺寸的晶片。
2.在晶片表面镀敷导电电极层(根据要求可以镀银或金)。
3.通过微量增厚或减薄镀层的厚度,进行频率的微调。
国内外在石英晶体元器件生产过程中使用的频率微调方法主要有蒸发频率微调技术,喷射频率微调技术,激光刻蚀频率微调技术,离子刻蚀频率微调技术
如图1-1所示,蒸发频率微调技术是石英晶体元器件加工中出现最早的微调技术。是在真空状态下,对装有蒸发材料(银)的钨制料舟进行加热,使银气化沉积在石英晶体表面而达到频率微调的目的。因为此技术频率偏差大,效率低,原料消耗大,国内外的使用在逐渐减少。
如图1-2所示,喷射频率微调技术是蒸发频率微调技术的改进型。是在真空状态下,对装有蒸发材料(银)钼盒进行加热,使银气化后从钼盒的孔中喷出,沉积在石英晶振晶体表面而达到频率微调的目的。因为此技术易于实现,相应的设备简单,成本低,频率偏移不是很大。因此目前国内外使用较多。
如图1-3所示,激光刻蚀频率微调技术是将激光发生器产生的激光照射石英贴片晶振晶体表面的电极层,使其气化而达到减薄电极层的膜厚度,从而达到调整频率的目的。因其精度高,速度快而被广泛的应用于石英晶体元器件的生产中。
虽然激光刻蚀频率微调技术精度高,加工质量稳定,生产效率高,但是激光频率微调后石英晶振晶片表面并不是均匀一致的,而是凸凹不平的。因此,并不适用于所有的石英晶体的频率调整,特别是AT系列产品。为此20世纪80年代末期开始,出现了关于离子東刻蚀频率微调技术的研究,经过多年的发展,国内外有些厂商已开始应用。如图1-4所示,离子束刻蚀频率微调技术是将离子发生器产生的离子加速后轰击晶片表面,使晶片表面的电极层脱落,减薄电极层膜厚,从而达到调整频率的目的.
石英晶振是利用晶体的压电效应制成的一种石英晶体振荡器。因为它具有高稳定性、高精度和低功耗等特点,被广泛应用于各种电器产品中。近年来,各生产企业为了在激烈的市场竞争中取得胜利,不断进行改善,提高产品的性能,降低产品的成本。本论文通过对离子刻蚀技术的探讨,对石英晶振的离子刻蚀频率微调进行研究。最后通过实验,明确了离子刻蚀频率加工时,刻蚀速度的设定,从而改善了离子刻蚀频率微调的加工工艺。使得加工效率和制品的良品率得到了很大的提高。
石英晶振作为一种震荡器经过了几十年的发展。由于它具有成本低、高Q值、高精度和高稳定度的特点,因此在电子领域中的作用一直不能被其它振荡器所替代。
并且随着电子信息产业为代表的应用领域不断发展和扩大,其自身也不断发展和变化。品种不断增多,有温度补偿式(TCXO晶振)、压控式(VCXO晶振)和恒温补偿式(OCXO晶振)等。尺寸也不断出大变小,现在最小贴片石英晶振的尺寸已达到22×14×1.0(m)。目前,各生产厂家为了不断提高竞争力,正在努力开发精度更高、成本更低、尺寸更小的石英晶振。
近几年来,对石英晶体元件的需求量逐年上升,每年约增长10%。到2010年, 约为105.04亿只。随着产品不断向小型化和片式化发展,石英晶振晶体元件也不断向这个方向发展。我国晶体行业近年来不断引进先进技术,促使该行业不断发展。生产设备及生产工艺不断提高,使中国成为晶体行业的主要生产基地。
2010年压电晶体出口值达到10.25亿美元。但由于市场竞争的激烈,产品价格不断下降,同时各种生产成本(包括产品的原材料、水、电和劳动力价格等)不断上升,使得该行业利润空间不断被压缩,造成了该行业的竞争异常激烈。为此,各生产企业都不断的追求生产效率的提高、成本的降低以及制品精度的提高。在贴片晶振,石英晶振生产过程中,离子刻蚀频率微调较大程度的影响着石英晶振的生产效率和制品的精度。
从手机可以移动携带开始,就一直是石英晶振使用量最大的电子领域,日本及至全球最大的品牌爱普生晶振进入中国市场之后,最早就是广泛大量的应用在手机上了,从老人机,半键盘半屏幕手机,滑盖手机到如今的智能手机,几乎都能看到爱普生晶振的身影。MC-146晶振和FC-135晶振在爱普生公司当中,被誉为是手机晶振的两大型号。
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.

石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置