通过前面CEOB2B晶振所发表的文章中相信大家对GPS系统以及晶振在GPS中的应用有了更深的了解.我们知道GPS输出的1PPS信号具有很好的长期稳定性,但是短期稳定性却很差。利用GPS信号来定时估计出晶振输出频率的偏差,并实时地进行校准,就可以得到短期稳定性和长期稳定性都很好的频率标准。锁定后的晶体振荡器能输出高精度的频率信号,其短期稳定度能保持本地振荡器的水平,优于l×10-11/s,并能在本地被控振荡器上有效地复现接收的标准时间频率信号的长期稳定度和准确度,锁定状态下频率准确度优于5×10-11,日漂移率达到10-13量级。
根据系统需要开发成本低、安全可靠的设计原则,提出了系统的整体设计方案。整个系统由高稳定度有源晶振,恒温石英晶体振荡器、GPS接收机、时间间隔测量模块、微处理器模块、高分辨率DA转化及信号调理模块、分频模块和显示等部分构成, 在控制软件(包括FPGA、单片机两部分)的控制下协调工作,其组成框图如图
3.1所示
方案各模块功能介绍
1.GPS接收机模块:接收GPS信号,输出标准IPPS秒信号(一般含有干扰脉冲),所以直接使用此信号不合适,必须通过解码判断其有效性并进行处理,然后用于校准石英晶振。
2.时间间隔测量模块:测量GPS接收机输出的1PPS信号和OCXO分频产的1Hz秒信号的上升沿之间的时间间隔值,并把测量结果传送给数据处理模块, 考虑到精度问题,先把OCXO晶振倍频到100MHz再分频成1Hz。
3.数据处理模块:在GPS信号有效时,接收时间间隔测量模块传送的数据运用Kalman滤波算法对测量的时间间隔进行数字滤波,消除lPPS信号的抖动。具体实现取相隔采样周期τ的两个滤波后的时间间隔差值△T1和△T2,得到相位差△T=△T2-△T1,用比时法计算相对频差:
其中,f6为被校准石英晶体振荡器的标称频率,Δf为石英晶体振荡器的测量频率与标称频率的差值。计算出频率4f后,根据OCXO的压控灵敏度系数K计算被校石英晶体振荡器控制电压的数字量,再通过高精度的D/A转换得出石英晶体振荡器的控制电压(控制电压U=U+Δf/K),达到校正晶体振荡器输出频率的目的。经过多次测量和控制,最终把石英晶体振荡器的准确度和稳定度都锁定在GPS卫星星载钟上。
同时, 系统还有自动记录功能,把校正数据,根据接收传感器组和辅助时钟模块发送的时间和温度等信息,把校正数据和与之对应的时间、温度等信息保存起来,GPS信号有效时,通过相应的算法分离出温度、老化等因素对石英贴片晶振的影响,如果检测到GPS信号失效后,结合采集到的实时温度和时间信息,利用失效前得到的预测模型,计算出老化和温度各自对输出频率的影响量,然后合成输出校正量来继续校准恒温晶振,使石英晶体振荡器能继续保持一定的精度。同时控制LCD的显示。
4.高分辨率D/A转换及信号调理模块:接收数据处理模块发送的控制数据, 将其转化为模拟控制电压,并通过相应的信号调理电路,使模拟电压的范围符合OCXO晶振的电压压控范围。
5.分频控制模块:将输入的经过校正后的原始频率信号进行分频,产生用于测量和同步输出的秒脉冲,并可以控制输出秒脉冲的脉冲宽度。
6.传感器组和辅助时钟模块:采集对OCXO晶振输出频率精确度有一定影响的温度和老化时间等信息,并传输给数据处理模块,为分离出温度、老化的影响提供相应的数据。
GPS介绍及恒温晶体振荡器OCXO模型建设
导航星全球定位系统 NAVSTAR/GPS Global Navigation Satellite Timing and Ranging Positioning System/Global Positioning System,简称GPS)是一个全新体制的定位定时系统,是可供全球共享的具有很高应用价值的空间信息资源,已经成为目前世界上应用范围最广、实用性最强的全球精密授时、测距和导航定位系统.
如图2.1所示。
GPS系统组成:全球定位系统(GPS)出3个部分组成:卫星星座,地面控制/监视网络和用户接收设备,也称其为空间部分、地面支撑系统、用户设备部分。
空间部分:空间为GPS卫星星座,由24颗GPS导航星组成(其中21颗工作3颗备均匀配置在6个与赤道夹角为55°的近圆形轨道上,轨道夹角为60°,这些卫星发播的信号能覆盖全球各个角落。这样可以保证全球任何地方的用户能在任何时刻观测到5~8颗GPS卫星,这些卫星工作在两种频率下:1575.42MHz和1227.6MHLz,卫星上均有遥测遥感天线,用于与地面监控系统通讯,每颗卫星都带有两台小型铯或氢原子钟(稳定度达2×10-13~1×10-14)、微型计算机、电文存储器和数据接收与发射设备,并且由太阳能电池及后备镉镍电池提供电源。
地面测控部分:由五个地面监测站、数据注入站和一个主控站组成。主控站位于科罗拉多州的联合空间执行中心,三个注入站分别设在大西洋的阿松森岛、印度洋的狄哥·伽西亚和太平洋的卡瓦加兰,五个监控站设在主控站、三个注入站和夏威夷岛,其示意图如图2.2。
主控站昼夜不停地自动分析处理来自个监测站地数据,编算出每个卫星的星历和GPS时间系统,将预测的卫星星历、钟差以及状态数据,然后把这些修正数据传送到数据注入站,由注入站再把修正数据分别发送递给相应的卫星。主控站还负责纠正卫星的轨道偏离,必要时调度卫星,让备用卫星取代失效的工作卫星。
五个监测站的主要任务是对每个卫星进行观测,并向主控站提供观测数据。每个监控站配有GPS接收机(这里对于石英晶振应用的要求就高了),对每个卫星进行常年连续不断的测量,每6秒进行一次伪距测量和多普勒观测、采集气象要素等数据。监测站是一个无人值守的数据采集中心,受主控站的控制,定时将观测的数据传送到主控站。五个监控站分布在全球范围,保证了GPS精密定轨的要求。对卫星的监视加注,每天至少要进行一次。通过这样的加注办法来补偿卫星钟的步调差和信号传播(GPS贴片晶振)过程中的变化,使卫星钟与GPS主钟之间保持精密的同步。
对石英晶体振荡器的锁定技术国内外已经展开了相关的研究,并且也已经有了些相应的产品。在国外,瑞士的 Special Time等公司都实现了利用卫星信号来锁定级频标的技术,并且将晶振分频得到的秒信号和GPS输出的1PPS信号同步起来,同步精度达到了15ns。对于二级频标的驯服保持技术,虽然有单位曾经做过研究,但是技术不成熟,因此没有推广。
由于近年来二级频标的大范围使用,为了节省成本并达到高稳定度和准确度的要求,加拿大的北方电信就此技术已经初步进行了研究。国内对于卫星信号锁定二级频标的技术已经有相关单位从事这方面的开发工作,但二级频标的精密驯服保持技术还处于起步阶段。
曾祥君曾提出采用高精度石英晶振对GPS时钟进行实时监测,建立了GPS时钟误差的测量模型,给出了一种高精度时钟的产生方法,同时他还提出用晶振信号同步GPS信号产生高精度时钟的一元二次回归数学模型,有效消除了GPS时钟信号的随机误差和晶振的累计误差,这对实际应用有很好的指导意义。国内外还利用相同的原理实现了基于GPS的铷钟的驯服。
例如,北京跟踪与通信技术研究所就实现了铷钟的自适应驯服,并且驯服时间更短, 精度更高;在国外, Juliano tibo narciso等人对数字和模拟两种方法实现的驯服晶振的性能进行了比较,结果表明模拟方法有更好的电气特性,但是电路复杂, 而数字化方法(PGA: Field Programmable Gate Array)实现简单,成本也比较低cha- Lung Cheng等提出了使用实时动态神经网络小波预测滤波器来消除大气延时,通过基于神经网络模型的预测控制器输出差值数字信号,经D/A转换来驯服石英晶振,贴片晶振的方法,但是实现复杂度很高。
英国的PTS公司生产出了基于GPS驯服铷钟的频率标准,结合DDS实现了输出频率在1μHz到80MHz的范围内可调。另外,美国的一家公司也开发出了相应的产品,型号为PRS10,其基准可以在GPS和其他高精度频率源之间进行切换。
CEOB2B晶振平台是目前全球首家专业性的电子商务平台,在这里你可以找到来自海内外上百种晶振品牌,为您提供免费产品推广,海内外石英晶振规格料号查询,下载服务等.CEOB2B晶振平台汇集了数千万中晶振产品,只要你需求的这里都给你准备好了,欢迎登入官网了解.
当离子枪使用时间过长使离子枪内部积碳、操作员在清扫真空腔时有异物掉入离子枪内、或因为离子枪冷却不良都会造成离子枪出力不稳定,使不良品数量增加。例如,如图4-1l1所示,当离子枪工作正常,出力稳定时,离子枪的实际刻蚀速度(设备根据设定的各参数计算出离子枪beam电压、放电电流并供给离子枪。离子枪在获得这些电压、电流后实际输出的离于束,对石英晶振晶片刻蚀的速度。
当离子枪工作不正常时,实际工作电压、电流也会与计算值产生很大偏差,因此就不能获得相应电流密度的离子束,使得刻蚀速度发生变化)等于设定的速度时,设备根据加工前测定的频率和设定的刻蚀速度计算出的加工时间与实际需要加工的时间相等,经过该时间的加工后可以达到目标频率。当离子枪的实际刻蚀速度大于设定的速度时,则计算出的加工时间大于实际需要加工的时间,此时,经过该时间的加工后,频率必然大于目标频率,而产生F+不良。
离子枪出力不稳定的处理方法
在实际生产中,离子枪的工作状态会逐渐变差。因此操作员遇到少量不良品的出现,不会意识到离子枪已发生异常,而是调整一些参数继续生产,直到出现大量不良品,通过调整参数也无法进行生产时才联系维修人员进行修理和保养。这样,不但会使离子枪长期处于不安定的状态,而且经常出现不良品。为此,本文通过前面的理论知识,利用公式(4.2)和(4.3)针对A品种的石英贴片晶振制作了一个简单的程序,界面如图4-12。
当操作元将制品放入设备中共,开始刻蚀加工时,只要输入设备仪表上的监控电压和电流,就可以知道现在的离子束刻蚀速度。只要与设定的刻蚀速度比较一下,当两速度相差较大时,便可知道离子枪已工作在不安定状态,应及时联系维修人员进行维修或保养。这样可以避免大量不良品的发生。
石英晶振离子刻蚀频率微调方法
图4-1是基于石英晶振离子刻蚀技术的频率微调示意图,离子刻蚀频率微调方法,当照射面积小于2~3mm2,在beam电压低于100V以下就可获得接近10mA/cm2的高电流密度的离子束,离子束的刻蚀速度在宽范围內可进行调节。图中采用的是小型热阴极PIG型离子枪,放电气体使用Ar,流量很小只需035cc/min。在:圆筒状的阳极周围安装永久磁石,使得在轴方向加上了磁场这样的磁控管就变成了离子透镜,可以对离子束进行聚焦。热阴极磁控管放电后得到的高密度等离子,在遮蔽钼片和加速钼片之间加高达1200V高压后被引出。并且可以通过对热阴极的控制调整等离子的速度。
用离子束照射石英晶振的电极膜,通过溅射刻蚀使得频率上升米进行频率微调。
在调整时,通过π回路使用网络分析仪对石英晶振的频率进行监控,当达到目标频率后就停止刻蚀,调整结束。
因为石英晶振与π回路之间用电容连接,离子束的正电荷无法流到GND而积聚在石英晶片上,使石英晶振晶片带正电荷。其结果不仅会使频率微调速度降低,而且使石英晶片不发振,无法对石英晶振的频率进行监控和调整。为此,必须采用中和器对石英贴片晶振晶振片上的正电荷进行中和。
在进行离子刻蚀频率调整时,离子束对一个制品进行刻蚀所需的时间为1~2秒, 而等待的时间约2秒,等待时间包括对制品的搬送和频率的测量时间。在等待时间中, 是将挡板关闭的。如果在这段时间内,离子枪继续有离子束引|出,则0.5mm厚的不锈钢挡板将很快被穿孔而报废。为此,在等待时间内,必须停止离子枪的离子束引出。
可以用高压继电器切断离子枪的各电源,除保留离子枪的放电电源(可维持离子枪的放电稳定)。这样,在等待时间没有离子束的刻蚀,使挡板的使用寿命大大增长。同是,出于高压继电器的动作速度很快,动作时间比机械式挡板的动作时间少很多,所以调整精度也可得到提高。
石英晶振频率微调国内外研究现状
石英晶体元器件的生产从晶片的切割到成品包装。在整个工艺流程中,以下几个工序主要影响着产品的频率。
1.晶振晶片的制作,根据目标频率制作出相应切割方位、尺寸的晶片。
2.在晶片表面镀敷导电电极层(根据要求可以镀银或金)。
3.通过微量增厚或减薄镀层的厚度,进行频率的微调。
国内外在石英晶体元器件生产过程中使用的频率微调方法主要有蒸发频率微调技术,喷射频率微调技术,激光刻蚀频率微调技术,离子刻蚀频率微调技术
如图1-1所示,蒸发频率微调技术是石英晶体元器件加工中出现最早的微调技术。是在真空状态下,对装有蒸发材料(银)的钨制料舟进行加热,使银气化沉积在石英晶体表面而达到频率微调的目的。因为此技术频率偏差大,效率低,原料消耗大,国内外的使用在逐渐减少。
如图1-2所示,喷射频率微调技术是蒸发频率微调技术的改进型。是在真空状态下,对装有蒸发材料(银)钼盒进行加热,使银气化后从钼盒的孔中喷出,沉积在石英晶振晶体表面而达到频率微调的目的。因为此技术易于实现,相应的设备简单,成本低,频率偏移不是很大。因此目前国内外使用较多。
如图1-3所示,激光刻蚀频率微调技术是将激光发生器产生的激光照射石英贴片晶振晶体表面的电极层,使其气化而达到减薄电极层的膜厚度,从而达到调整频率的目的。因其精度高,速度快而被广泛的应用于石英晶体元器件的生产中。
虽然激光刻蚀频率微调技术精度高,加工质量稳定,生产效率高,但是激光频率微调后石英晶振晶片表面并不是均匀一致的,而是凸凹不平的。因此,并不适用于所有的石英晶体的频率调整,特别是AT系列产品。为此20世纪80年代末期开始,出现了关于离子東刻蚀频率微调技术的研究,经过多年的发展,国内外有些厂商已开始应用。如图1-4所示,离子束刻蚀频率微调技术是将离子发生器产生的离子加速后轰击晶片表面,使晶片表面的电极层脱落,减薄电极层膜厚,从而达到调整频率的目的.
石英晶振是利用晶体的压电效应制成的一种石英晶体振荡器。因为它具有高稳定性、高精度和低功耗等特点,被广泛应用于各种电器产品中。近年来,各生产企业为了在激烈的市场竞争中取得胜利,不断进行改善,提高产品的性能,降低产品的成本。本论文通过对离子刻蚀技术的探讨,对石英晶振的离子刻蚀频率微调进行研究。最后通过实验,明确了离子刻蚀频率加工时,刻蚀速度的设定,从而改善了离子刻蚀频率微调的加工工艺。使得加工效率和制品的良品率得到了很大的提高。
石英晶振作为一种震荡器经过了几十年的发展。由于它具有成本低、高Q值、高精度和高稳定度的特点,因此在电子领域中的作用一直不能被其它振荡器所替代。
并且随着电子信息产业为代表的应用领域不断发展和扩大,其自身也不断发展和变化。品种不断增多,有温度补偿式(TCXO晶振)、压控式(VCXO晶振)和恒温补偿式(OCXO晶振)等。尺寸也不断出大变小,现在最小贴片石英晶振的尺寸已达到22×14×1.0(m)。目前,各生产厂家为了不断提高竞争力,正在努力开发精度更高、成本更低、尺寸更小的石英晶振。
近几年来,对石英晶体元件的需求量逐年上升,每年约增长10%。到2010年, 约为105.04亿只。随着产品不断向小型化和片式化发展,石英晶振晶体元件也不断向这个方向发展。我国晶体行业近年来不断引进先进技术,促使该行业不断发展。生产设备及生产工艺不断提高,使中国成为晶体行业的主要生产基地。
2010年压电晶体出口值达到10.25亿美元。但由于市场竞争的激烈,产品价格不断下降,同时各种生产成本(包括产品的原材料、水、电和劳动力价格等)不断上升,使得该行业利润空间不断被压缩,造成了该行业的竞争异常激烈。为此,各生产企业都不断的追求生产效率的提高、成本的降低以及制品精度的提高。在贴片晶振,石英晶振生产过程中,离子刻蚀频率微调较大程度的影响着石英晶振的生产效率和制品的精度。
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.

石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置