接着前面的文章我们继续分析基于晶振的微力传感器的发展.有不懂的问题可以到CEOB2B晶振平台晶振技术资料中查看,有关石英晶振的各种型号,参数信息均可查到.
非接触模式是控制探针在样品表面上方扫描,始终不与晶振样品表面接触因而针尖不会对样品造成污染或产生破坏,避免了接触模式中遇到的一些问题。针尖和样品之间的作用力是很弱的长程作用力一范德华吸引力。非接触模式是测量长程力所采用的方法,其分辨率比接触模式的分辨率要低,由于针尖很容易被表面吸附气体的表面压吸附到样品表面,造成图像数据不稳定和对样品的破坏。因此非接触模式操作实际上较为困难,并且通常不适合在液体中成像。
轻敲模式介于接触模式和非接触模式之间(13l。其特点是扫描过程中微悬臂也是振荡的并具有比非接触更大的振幅(大于20nm),针尖在振荡时间断地与样品接触。由于针尖与晶振等样品接触,分辨率几乎和接触式扫描一样的好,但由于接触是短暂的,因此对样品的破坏几乎完全消失,克服了常规扫描模式的局限性。轻敲模式还具有大而且线性的操作范围,使得垂直反馈系统具有高度稳定性,可重复进行样品测量。对于软、粘和脆性样品的研究具有独到的优势但轻敲模式同样也增加了操作和设备的复杂性,在实际运用中存在着不易控制的缺点。
SFM技术的发展强烈依赖于带有特殊针尖的微悬臂制备技术的发展13-15。这种微悬臂和针尖必须是能够简便而快速制备的。在原子力显微镜发展之初,悬臂几何形状一般为L形。其主要是通过将一个很细的金属丝或线圈弯曲90°后,顶端经电化学腐蚀成一个针尖而制备得到的。这种制备方法完全依赖于实验技师的手工技能。第二种悬臂制备方法是微刻技术。第一代是简单的SiO2悬臂,形状为直角和三角,是从氧化硅片上刻蚀得到的。其同腐蚀金属针尖相比,不能很好的控制其尖锐程度。后来改用SiN4代替SiO2作为悬臂材料。Si3N4脆性较低,而且厚度可以从1.5降到0.3um。这一代悬臂具有完整针尖,而且曲率半径非常低。
美国斯坦福大学是在硅片上刻蚀出金字塔形的小片,可以得到曲率半径小于30nm的针尖。IBM公司则采用硅片(100)来制备具有完整针尖的硅悬臂,曲率半径低于100nm。这些通过微电子加工将针尖集成于一体的微悬臂方法有很好的可重复性,不需粘另外的针尖,便于大批量生产。所以一般商用的AFM都采用这种力传感器。但对于静电力显微镜和磁力显微镜来说,由于针尖材料具有特殊的要求,还是要采用在微悬臂上粘针尖的方法。
从以上可以看出,这些基于微悬臂的SFM它们都有一个共同的缺点;它们不仅需要一个结构复杂的微小悬臂作为力的传感器,而且还要一个激光干涉仪用于检测微悬臂的微小位移来获得表面变化信息。因而结构较为复杂,成本也很高,操作难度增大,也就造成其在应用中的局限性。所以必须采用其他的传感器和非光学的检测方法。
石英晶振在如今产品中的应用变得尤为重要,为了更好的使用晶振,我们除了要知道晶振的生产材料,晶振使用型号参数等一些条件之外,关于晶振的使用注意事项,以及石英晶振,贴片晶振晶片的一些关注点也应该知道.在前面的文章中CEOB2B晶振平台介绍了晶振晶片的由来以及其工作原理,下面我们要介绍的是膜厚控制仪用电子组件引起晶振片的高速振动和晶振监控的优缺点.
膜厚控制仪用电子组件引起晶振片的高速振动,约每秒6百万次(6MHz),镀膜时,测试每秒钟振动次数的改变,从所接受的数据中计算膜层的厚度。为了确保晶振片以6MHz的速度振动,在真空室外装有“振荡器”,与晶控仪和探头接口连接,振荡器通过迅速改变给晶振片的电流使晶振片高速振动。一个电子信号被送回晶控仪。晶控仪中的电路收到电子信号后,计算晶振片的每秒振速。这个信息接着传送到个微处理器,计算信息并将结果显示在晶控仪上:
(1)沉积速率(Rate) (埃/秒)
(2)已沉积的膜厚( Thickness) (埃)
(3)晶振片的寿命(Lie) (%)
(4)总的镀膜时间(Time) (秒)
更加精密的设备可显示沉积速率与时间的曲线和薄膜类型。
石英晶振监控的优缺点
◆优点:
1.晶振法是目前唯一可以同时控制膜层厚度和成膜速率的方法。
2.输出为电讯号,很容易用来做制程的自动控制。
3.对于厚度要求不严格的滤光片可以利用作为自动制程镀膜机。
4.镀金属时,石英监控较光学监控来的方便精确。
◆缺点
1.厚度显示不稳定。
2.只能显示几何厚度,不能显示折射率。
3.一般精密光学镀膜厚度只用做参考,一般用作镀膜速率的控制。
◆所以一台镀膜设备往往同时配有石英晶体振荡器监控法和光学膜厚监控法两套监控系统,两者相互补充以实现薄膜生产过程中工艺参数的准确性和重复性,提高产品的合格率。
在前面的文章中我们了解到了GPS的应用以及高精密石英晶体振荡器在GPS内部所提供到的作用,GPS晶振的工作原理等等。晶振的作用随着科技的发展到如今已是无处不在,各种大大小小的智能科技产品都会用到石英贴片晶振.接下来我们要说到的是GPS信号失效后保持算法的研究以及与晶振之间的联系.
从前面文中介绍GPS接收机的相关介绍可知,1PPS信号可能在多种因素的作用下丢失。如果通过解码发现失效,应立即停止以它作为基准来驯服OCXO晶振,否则可能对OCXO晶振产生误调整,使系统产生很大的误差,但是这时OCXO晶振的输出频率精度会由于老化和温度等因素的影响而不断降低。为了解决这一问题,采用保持算法, 即在正常锁定过程中,实时记录晶振的频率随时间的漂移率,即确定石英晶体老化率曲线,再利用温度传感器,建立温度和频率漂移率的函数关系。当GPS信号失效后,根据以前正常驯服状态下记录的历史数据,通过合理的算法对OCXO晶振输出频率的变化趋势做出准确预测,进而在此基础上实现对频率误差的实时校正,以保证输出频率精度在可容忍的精度范围内,直到GPS信号恢复后再继续锁定晶振。
OCXO石英晶体振荡器的老化模型是非线性的,而其频率温度变化模型则可认为是线性的,并且可以利用 Kalman滤波器来对这两种模型的参数进行估计,进而可以实现GPS信号失效后OCXO晶振频率的预测校正。然而老化率的非线性是对于较长时间而言的,在短时间内比如说一天,老化模型也可以被简化为线性,这大大方便了算法上的处理关于OCXO石英晶体振荡器的驯服保持模型的原理框图如图5.3所示
图中的三个开关S1、S2、S3在卫星工作状态正常时均处于开启状态,OCX0石英晶体振荡器直处于驯服状态,并且预测模型一直处于工作模式。如果系统经过判断确定卫星信号丢失,而且当时已经完成锁定,系统便会处于保持模式,三个开关均闭合, 这样老化和温度预测模型可以根据其预测的结果并以自己本身的输出作为观测量的输入来实现频率偏差的预测。预测模型的最终输出是出四项叠加而成:驯服的初始校正量、老化模型的预测输出、温度影响模型的预测输出和温度模型的延迟补偿量.
为了实现1PPS信号失效后的保持,必须先将由老化和温度变化引起的影响量分离开来,而分离算法的确定与这两种影响的性质有密切关系。一般认为老化的影响属于慢变,而温度的影响则相对变化较快,即在频域,老化的影响处于低频段,温度的影响处于较高的频段,这样就可以将它们分离开来,即采用不同类型和带宽的数字滤波器就可以实现这两种影响的分离国,ⅢRF、IRF2和RF为滤波器, 其中IRF和IRF3为1阶的低通滤波器,IRF2为3阶的低通椭圆滤波。
图中的IRF1是用来同时通过锁定状态下由温度变化引起的校正量中的高频变化部分和老化引起的低频变化部分,其带宽应该由高频分量确定。在一般的应用环境下,温度的最大变化率可以达到10℃h,而这里所采用的OCXO贴片晶振的线性频率温度系数为6~8ppb/40℃,于是可以得到最大温度变化率引起的频率漂移率达到4.17~5.56×10-4ppb/s。所以IRF的带宽被设计为3×10-3ppb/s(3mHz),即是最大频率温度漂移率的5.4倍,这样就可以通过所需要的信号,并且针对校正信号中由GPS接收机引入的高频噪声,进行每10倍频10dB的衰。
IRF2用于从经过RF滤波后的校正量中分离出老化的影响,那么其带宽由反映老化的低频分量决定。这里采用的OCXO晶振的老化率为0.5ppbd或者58×10-6ppb/s,所以IIRF2的带宽被设计为3×10-5ppbs(0.03mHz),即为秒老化率的5.2倍,并且其阻带衰减最小为50dB,带内波动为1.5dB,这样可以较好的过滤掉温度的影响。IRF2的输出直接输入给了老化的 Kalman预测模型,并且将其从IRFl的输出中减掉,可以提取出温度的影响。
IRF用和RF完全相同的设计,主要用来进一步抑制GPS接收机引入的噪声和消除IRF2输入输出信号的数字相减带来的毛刺。由于IRF1和IRF2处于温度影响预测模型的输入通道上,会使得校正量的预测产生延迟,使预测滞后于IRFl的输入信号。因此有必要在温度预测模型的输出加上一个延迟补偿模块,由它在保持模式时计算出相应的补偿量,并叠加到预测模型的输出信号上来消除延迟的影响。这里的延迟补偿量由温度预测模型输出的变化率和滤波器的延迟量相乘来得到,而滤波器的延迟量的最优估计为个小时,温度预测模型输出变化率由其输出对于时间的一阶微分的100点滑动平均来得到,其中每秒采集一个数据。
在进行系统测试时,被锁晶振采用高稳定度恒温晶体振荡器(10MHz±3Hz),GPS接收机选用LASSEN IQ型,采用5585B-PRS型铯原子频标作为频率参考,该铯原子频标可输出10MHz信号,具有较好的频率准确度及稳定度,其频率准确度优于5×10-12,秒级频率稳定度优于1×10-11/s。
采用相位比对的方法来测试被锁石英晶振的相对频率准确度,测试连接图如图5.1所示。将被锁定的晶体振荡器的10MHz频率信号和铯原子频标产生的10MHz频率信号分别作为开关门信号输入到精密时间间隔测试仪HP5370B(分辨率为20ps) 进行比对测试,HP5370B输出的时间间隔值与两个比对信号的相位差成正比。该时间间隔值的变化反映了两个信号的相位差的变化。计算相对频差的公式为:
其中,τ为取样周期;△T为在取样周期τ内两信号累积的相位差变化。由此式可以看出,△T的测量误差取决于HP5370B的时间间隔测量分辨率,最小为±20ps,也就是在ls闸门时间内相对晶振频率准确度为±2×10-11,但是随着采样时间r的增大,测量误差可以大大的减小,精度也不断提高。
由于天气等原因,对接收机工作有影响,所以做实验时适当选择比较好的天气。取样时间设定为40s,OCX0石英晶体振荡器在系统运行3小时后即进入锁定状态,开始对晶体振荡器锁定状态下与铯原子频标进行相位比对测试,记录系统连续工作10小时的数据,图5.2为OCXO晶振的频率准确度随时间的变化曲线。
从图5.2中可以看出,锁定后OCXO晶振的频率值在标称频率上下起伏,最大起伏约为9.0×10-11。通过计算,图5.2中所显示的频率平均准确度达到73×10-12,相对于所采用晶体振荡器的约5×10-10/d的老化率有明显改进,同时也说明晶振频率的漂移得到了一定程度的修正。
在进行石英贴片晶振频率稳定度测试时,由于实验室测频仪器测量的分辨率的有限,ls和10s的稳定度由直接测频法计算得到,而100s、1000s、5000s和10000S由比相间接测频法计算得到,相位比对数据采用上面图5.2中所采集的数据。锁定后, OCXO的频率稳定度测试结果如表5.1所示:
从表51中可以看出,锁定后的OCXO恒温晶体振荡器的短期稳定度基本保持了其本身的指标,而其中长期稳定度不是非常理想,这是由lPPS中存在的中长期相位漂移以及Kalman滤波和PID控制参数还不是很合理造成的,但总体较其本身指标,有一定程度的提高。因此,后续工作需要增大滤波时间常数,进一步继续优化 Kalman滤波和PID控制模型的参数,使得 Kalman滤波的收敛值更小,对OCXO晶振频率的调整幅度和频度更低。
当离子枪使用时间过长使离子枪内部积碳、操作员在清扫真空腔时有异物掉入离子枪内、或因为离子枪冷却不良都会造成离子枪出力不稳定,使不良品数量增加。例如,如图4-1l1所示,当离子枪工作正常,出力稳定时,离子枪的实际刻蚀速度(设备根据设定的各参数计算出离子枪beam电压、放电电流并供给离子枪。离子枪在获得这些电压、电流后实际输出的离于束,对石英晶振晶片刻蚀的速度。
当离子枪工作不正常时,实际工作电压、电流也会与计算值产生很大偏差,因此就不能获得相应电流密度的离子束,使得刻蚀速度发生变化)等于设定的速度时,设备根据加工前测定的频率和设定的刻蚀速度计算出的加工时间与实际需要加工的时间相等,经过该时间的加工后可以达到目标频率。当离子枪的实际刻蚀速度大于设定的速度时,则计算出的加工时间大于实际需要加工的时间,此时,经过该时间的加工后,频率必然大于目标频率,而产生F+不良。
离子枪出力不稳定的处理方法
在实际生产中,离子枪的工作状态会逐渐变差。因此操作员遇到少量不良品的出现,不会意识到离子枪已发生异常,而是调整一些参数继续生产,直到出现大量不良品,通过调整参数也无法进行生产时才联系维修人员进行修理和保养。这样,不但会使离子枪长期处于不安定的状态,而且经常出现不良品。为此,本文通过前面的理论知识,利用公式(4.2)和(4.3)针对A品种的石英贴片晶振制作了一个简单的程序,界面如图4-12。
当操作元将制品放入设备中共,开始刻蚀加工时,只要输入设备仪表上的监控电压和电流,就可以知道现在的离子束刻蚀速度。只要与设定的刻蚀速度比较一下,当两速度相差较大时,便可知道离子枪已工作在不安定状态,应及时联系维修人员进行维修或保养。这样可以避免大量不良品的发生。
在前面的文章中我们介绍了石英晶振的由来,工作原理,以及晶振频率的微调研究,离子束加工原理等技术资料,接下来CEOB2B晶振平台要给大家介绍的是晶振离子束刻蚀设备.
离子束刻蚀需要使用适当的电压和电流将某种气体电离成离子,然后对其进行聚焦和加速,使之形成高能的离子束对工件进行加工。这些过程在大气压状态是无法完成的,所以离子刻蚀加工必须在高真空环境中进行。为此石英晶振离子束刻蚀设备必须包括真空腔和排气系统。此外,为了产生高能离子束还必须有离子源以及控制离子源的电源系统。最后,根据加工的石英贴片晶振和目的不同,还需要配备不同的监测系统和控制系统。
3.3.1离子
离子源也称离子枪,是产生高能离子束的装置。因此,离子源是这个离子刻蚀设备的核心。离子源的工作状态决定着整个石英晶振晶体设备的工作效率和刻蚀精度。并且,在不同的应用中,离子源的种类也各不相同。为此,在实际应用中,一般用以下参数来衡量离子源的性能:
1.束流强度和束流密度。离了束的离子流的大小称为束流强度,用Ⅰ表示。离子束的单位面积上的离子流大小称为束流密度,用J表示。当离子束的横截面是S,则: I=JS。当其他因素不变时,束流强度或束流密度增大时,离子刻蚀的能力就增大。
2.离子束的尺寸和张角。离了束的尺是指离子束直径的大小。离子束的张角则是指当使用的宽离子束是汇聚束或发散束时的收敛角或发散角。或者细直径离子束的束救角。
3.气体利用率。也就是气体输入离子源后,经过电离、聚焦和加速后能成为有效离子的百分比。
4.功率和效率。效率是指高子源输出的高能离子束的能量与输入离子源的能量的比。在石英晶振,石英晶体振荡器实际应用中,为了提高能源的利用率,必须尽可能的提高离子源的效率。
5.离子源的运行特性。运行特性用于衡量离子源工作的稳定性和可靠性。保证设备能够安定的生产。
3.3.2工作腔
真空腔的大小要适中或者将真空腔分为加工室和准备室,加工室一直保持高真空。这样可以减轻真空泵的负担减少抽真空所需的时间。另外,在真空腔中需安装摆放石英晶体,贴片晶振等工件的工作台。工作台的移动可以通过马达或R0B0T控制,以便调整离子束与工件的位置。当马达在真空腔外时,还必须保证转动轴的真空密封性。避免由于转动轴处发生空气泄露,破坏加工的真空环境,影响晶振加工的品质。同时空气泄露后会加重真空泵的负担,如果是湿泵还容易加速真空油的劣化,缩短真空泵的使用寿命:工作台和离子源按不同应用可以分别配备水冷循环系统,对工件与离子源进行降温,以保证石英晶振的品质与离子源的出力稳定。最后,真空腔还应有一个观察窗口,以便观察加工的情况。
3.3.3排气系统
排气系统一般分两段对真空腔进行排气,先用油旋转泵等低真空泵排气,使真空度达到0Pa左右,然后用油扩散泵等高真空泵排气,使得真空腔达到各种加工所要求的高真空度。一般情况下,真空腔的本底真空度应高于103Pa,这样可以避免真空腔内混入过多的其他气体分子和水蒸气,这些气体分子和水蒸气不仅对离子源出力的稳定产生影响,还会污染石英贴片晶振工件,降低产品品质。此外在使用油扩散泵时,还必须在泵前加装冷凝阱防止油蒸汽付真空腔的污染。
3.4离子束刻蚀的应用
离子束蚀具有多项优点:入射离子的方向性很强,刻蚀分辨率高,能刻蚀任何材料,一次能刻蚀多层材料,刻蚀在高真空中进行,刻蚀过程不易受污染。因此被广泛应用于电子工业、生物医疔等行业中.
首先,出于离子束刻蚀具有上述优点,在电子工业中特别适合于对半导体元件的引线制作和图形刻蚀,以及石英晶振晶片的减薄加工。其次,在生物医疗应用中,可以将人造器官的表面刻蚀成特定的结构,使人体的组织在其表面容易生长。另外,在电子显微镜和做表面分析用的试样制备中,出于离子束刻蚀使用物理的撞击效应和溅射效应,并且分辨率高容易控制,因此可以制成无化学污染的高质量的试样。
建立晶振FRACAS系统重要实施步骤
1.建立晶振FRACAS管理小组和故障评审分析小组
晶振FRACAS管理小组是FRACAS管理小组的核心组成部分,是FRACAS运行系统的管理组织,负责监督 FRACAS系统的运行情况。在Z公司挑选2~3名有资质的人员来组成石英晶振,贴片晶振FRACAS系统管理小组,管理小组的职能就是为 FRACAS运行系统服务,促进FRACAS管理系统顺利的运行FRACAS管理小组建立之后,还需要负责故障评审分析小组人员的选拔工作。故障评审分析小组需要很强的业务能力和管理能力,因此主要选拔部门领导和公司的高级技术人员,使故障分析小组有足够的能力来分析出故障原因、模式及故障责任部门。石英晶振FRACAS管理小组每月对故障数据进行汇总,并组织故障评审分析小组来召开评审分析会议。
在会议召开前,石英晶振,贴片晶振FRACAS系统管理小组已经将汇总故障数据分发给故障评审小组人员。在故障评审会议上就可以直接有针对性进行故障评审分析工作,找出造成故障的根本原因。对于那些重复出现的故障,一定要反复论证,找出能解决这些故障的纠正措施,举一反三,争取让故障不再发生。在纠正措施施行之后,FRACAS管理小组还需要对纠正效果进行跟踪评价,保证会议上提出的决策得到落实。
2.FRACAS系统技术培训
(1)晶振FRACAS管理小组和评审分析小组的成员
培训时间:0.5~1天
培训内容:FRACAS原理、组织架构及实施流程
进行培训的目的是使石英晶体振荡器,石英晶振FRACAS系统管理人员的可靠性素质得到提高,提高对故障的分析能力,管理人员的水平提高了,FRACAS系统的运行工作就会更加容易的开展。
(2)客服、维修人员
培训时间:每个站点0.5~1天
培训内容:故障信息及维修信息收集
客服、维修人员担负着收集石英晶振,贴片晶振,有源石英晶体振荡器故障缺陷资料的责任,其收集到的数据的质量影响着故障分析工作的开展,为了保障收集故障数据的完整、客观。需要对他们进行培训,培训内容主要包括FRACAS的原理意义,及故障维修信息记录单的填写方法。
3.完善故障维修信息记录
由于Z公司条件有限,目前还没有开展对Z石英晶振的完善的可靠性试验获取石英晶振,贴片晶振可靠性缺陷的数据就比较困难,但Z公司石英晶振的出货量很大,从市场的反馈中可以获取大量的缺陷数据,这样就可以弥补可靠性缺陷数据不足的问题。目前售后人员只做了维修记录单,为了实现对缺陷的统计,可以在维修单加上一联故障维修信息记录单,写明故障缺陷详细信息,便于对缺陷信息进行统记.
4.规范故障维修信息
售后人员在填写故障维修记录单时,应将元器件的维修信息、故障原因、故障元器件的可靠性参数、对故障的影响等,这些信息必须填写准确详细。售后人员填写完成后将故障维修记录单上报给FRACAS管理小组,由管理小组对故障模式进行分类。
5.故障维修信息汇总
每个月FRACAS管理小组都要对故障维修数据进行汇总。管理小组对本月从售后部门收集的故障信息进行分析与分类,然后汇总,结合销售部门的销售数据,就可以得到返修率数据客服维修部门首先结合自身工作状况,依据本周期内的故障信息进行一个初步的总结,并形成客服部门故障意见报告,报告内容也是对本部门工作的一个总结,同时也可以为故障评审小组进行分析工作提供一个参考。
FRACAS管理小组总结对数据的收集分析结果,主要包括各个部门数据的汇总、故障分析的结论以及下一步的改进方向等.晶振FRACAC管理小组在评审会议召开前将汇总的分析结果分发给参加评审的人员,便于它们在会议前对近期的系统工作运行情况有个初步了解,这样有利于评审会议的审议。
6.建立故障模式数据库
对故障分析结束后,石英晶振,贴片晶振,有源晶振FRACAS管理小组人员和技术人员需要对出现的故障进行分类,并联合设计研发人员,将故障现象与故障模式一一对应上,结合技术研发人员的实际经验,建立故障模式数据库
7.理顺FRACAS系统与质量管理体系之间的关系
FRACAS与质量管理体系不是两个对立的管理体系,FRACAS可以看作质量管理体系下的一种有效的管理工具,通过建立FRACAS系统,可以增强企业对可靠性管理过程的控制,FRACAS系统与质量管理体系的目的是一样的,都是提高石英晶振,贴片晶振质量与可靠性。
虽然质量管理体系涉及到企业管理的各个方面,但是涉及到可靠性管理的故障处理文件不多,因此需要建立 FRACAS系统来提高企业的故障信息处理能力.FRACAS系统与质量管理体系之间是相辅相成的,在企业日常管理中,人员定要各司其职,为提高石英晶振,贴片晶振可靠性共同努力。
A型石英晶振的组成
A型石英晶振结构比较简单,由底座、PCB电路板、元器件、晶体、外壳五部分组成,根据这些零部件的功能分析,可以得到A型晶振的可靠性框图, 可靠性框图见图3-4
4.22A型石英晶振的可靠性要求
A型石英晶振的可靠性指标要求如下:
(1)石英晶振在工作n年内不发生致命故障
(2)石英晶振n年内总的工作时间不低于:t=n×365×24。
(3)石英晶振的可靠度为0.95:即Rs=0.95。
4.2.3A型石英晶振的可靠度计算
可靠度是指产品在规定的条件和规定的时间内,能正常完成规定功能的概率,通常用R表示。根据对A型石英晶振的结构分析,可以看出A型石英贴片晶振为串联结构,可靠度计算公式如下:
RS=R1×R2×R3×…·×Rn 公式(4-1)
A型石英晶振由四部分组成:底座、电路板、元器件、晶体、外壳。A型石英晶振可靠度计算公式如下:
RS=R1×R2×R3×R4×R5 公式(4-2)
式中:R、R2、R3、R4、R5分别代表底座、电路板、晶体、元器件、外壳的可靠度。
4.24A型石英晶振的可靠性预计
可靠性预计,顾名思义指的是对产品在规定的工作条件下进行可靠行估计也就是根据类似产品的经验数据或组成该产品的各单元的可靠性数据,对产品给定工作或非工作条件下的可靠性参数进行估算。
可靠性预计的意义主要有:
(1)为产品设计阶段的可靠性设计提供依据
(2)为产品的维护阶段提供有价值的信息。
3)站在可靠性设计的角度,筛选设计方案,寻找最佳设计方案。
(4)为改进设计方案提供理论支持。
可靠性预计的方法主要有上下限法、元件计数法、相似产品法、应力分析法评分法、故障率预计法、性能参数预计法。根据W公司实际情况,本文采用应力分析法对贴片晶振,石英晶振,石英晶体进行可靠性预计。因为A型石英晶振的主要部件的故障率均可通过供应商得到,所以本文采用应力分析法。采用GJB/Z299C-2006预计手册。故障率预计法的计算公式为:
4.2.5A型石英晶振的可靠性分配
可靠性分配指的是将整个系统的可靠性指标分配给各个组成部分,是将可靠性指标总整体到局部,从上到下进行分配的过程。可靠性分配有以下意义:将产品的整体可靠性指标进行分配,分配到产品的下级组成部分,可以使每个组成分的可靠性设计指标更加准确细致,便于可靠性设计人员进行分析。
可靠性分配方法主要有 AGREE分配法、拉格朗日乘数法、比例分配法、评分分配法、复杂度分配法、动态规划法、重要度法、直接寻查法。
本文采用 AGREE分配法对A型石英晶体振荡器,贴片晶振,石英晶振进行可靠性分配, AGREE分配法将整体的每一个组成单元的复杂度和重要度纳入到可靠性分配中。 AGREE方法的核心是:失效率的分配和整体的各个组成单元的重要度和复杂度有关,组成单
元越重要,分配的失效度就应该越高。相反,组成单元的重要度越高,分配的失效度就应该有所减少。也就是说,分配给每个组成单元的失效度是加权的,加权因子C与组成单元复杂度成正比,与组成单元的重要度成反比。
单元或子系统的复杂度的定义为单元中所含的重要零件、组件(其失效会引起单元失效)的数目Ni(i=1,2.n)与系统中重要零、组件的总数N之比,即第i个单元的复杂度为:
假定设备的寿命符合指数分布,则可靠度为:
单元或子系统的重要度的定义为该单元的失效而引起的系统失效的概率。其表示为考虑装置的重要度之后,把系统变成一个等效的串联系统,则系统的可靠度Rs可以表示为考虑装置的重要度之后,把系统变成一个等效的串联系统,则系统的可靠度Rs可以表示为:
考虑装置的重要度之后,把系统变成一个等效的串联系统,则系统的可靠度Rs可以表示:
式中:
Wi —为系统的失效率
Ki —产为单元的复杂度
对产品的设计、生产、维修等全流程进行诊断分析,通过对Z公司相关控制程序、作业指导书、作业人员的访谈、生产线实地走访、试验过程分析等途径,来分析诊断贴片晶振,石英晶振故障原因。通过诊断,发现Z公司的可靠性设计、生产,可靠性试验等方面存在这严重不足,最后运用因果分析图从人、机、料、法、环、测等六个方面来对石英晶振故障原因进行诊断,诊断结果如图4-1。
1.供应链问题FRACAS( Failure Report Analysis and Corrective Action Systemm),即故障报告、分析和纠正措施系统。首先通过报告产品的故障来分析故障原因,然后制定有效措施来解决可靠性问题,防止故障再次出现,与此同时,把故障原因和对应的纠正措施反馈到设计过程中,从而形成可靠性增长的良性循环。图4-2为FRACAS工作流程图。
在企业建立故障报告、分析及纠正措施系统( FRACAS)系统可以提高企业的可靠性管理水平,它既能分析故障原因,提出问题改进意见,又能将故障模式收入数据库中,为以后出现类似可靠性问题提供参考。通过运行 FRACAS系统,在第二次大战期间,战争进行得十分惨烈,众多军事装备发挥了巨大作用, 战斗机、火箭炮、坦克、各种电子信息设备应用于战场,提高了军队的战斗力。但是,这些先进装备可靠性不稳定,出现各种问题,军方对这些装备的可靠性提出不满,德国科学家最早提出了可靠性的相关理论,在研制V1火箭的过程中, 就提出了可靠性乘积理论。
20世纪50年代,为了提高军事装备的可靠性,美国投入了巨大的资源对可靠性理论进行研究。在这期间,美国成立了著名的“电子设备可靠性顾问委员会” ( Advisory Group on Reliability of Electronic Equipment, AGREE)。这是一个专门从事可靠性研究的组织。1957年6月4日, AGREE发布了《军用电子设备可靠性报告》,报告提出了可靠性是可建立、可分配的,这份报告为可靠性的发展奠定了基础。与此同时扌,另一个超级大国苏联为了保证本国航空航天的可靠性,也开始对可靠性理论进行研究。在这一阶段,很多国家大力开展了可靠性理论的研究日本是其中对可靠性研究比较先进的国家,他们认为可靠性理论可以提高本国企业的竞争力。1958年,日本成立“可靠性研究委员会”,专门对可靠性理论进行研究。
20世纪60年代,美国的科技水平已经领先世界,特别是航空航天事业,进入迅速发展的时期,为了保证航天事业的可靠性,美国国家航空航天管理局NASA)开始运用可靠性理论对航天器进行设计和研究。
20世纪80年代,信息技术蓬勃发展,计算机逐渐应用于各种研宄领域中可靠性研究理论也开始运用计算机技术(其中起关键作用的不乏石英晶振),计算机的应用,进一步加速了可靠性理论的发展。可靠性的发展方向也在改变,逐渐向更加深层的领域发展,可靠性的地位也在不断提高,已经与费用工期处于基本相同的位置,与此同时可靠性管理的制度化也在不断加强。
21世纪以来,可靠性研究工作对象由电子产品,电子零件,石英贴片晶振,向非电子产品,由硬件向软件,由工作状态向储存状态等领域扩展。可靠性工作的开展促进了与之密切相关的装备可用性、保障性、综合技术保障等特性以及效能费用分析的研究。
2.12可靠性定义
人们通常将可靠性理解为石英晶振,石英晶体振荡器产品在正常的使用条件下,它是否会出现故障,是否稳定。在国家标准GB/T3187-1994中,对可靠性有明确的定义,把可靠性定义为:“产品在规定条件下和规定时间内,完成规定功能的能力。”。通过对可靠性定义的理解,可以看出.
1.“规定条件”是可靠性定义的一个重要要求,产品使用的条件不是任意的。可靠性也应实在规定的使用条件下,比如固定的温度、湿度等环境条件,在比如固定的振动条件下、储存方法以及使用方法等都是属于“规定条件”的范畴。
2.“规定日时间”也是可靠性定义的要求,产品的可靠性随着时间的流逝不可能保持不变的,时间越久,产品的可靠性也就越低,因此“规定时间”与可靠性要求密不可分。根据产品性质的不同,可靠性对应的时间指标也不尽相同。可靠性里讲的时间是广义的,“规定的时间”也可以指产品使用周期、次数等,对于汽车行业来说,里程也可以说是广义的时间范畴。
3.“规定功能”是另一个重要的可靠性指标,“规定功能”指的是产品应具备的技术指标。不同产品的技术指标是不同的,要想分析产品的可靠性,就先要把握好产品的技术指标,也就是“规定功能”。
在可靠性设计方面,可靠性有基本可靠性和任务可靠性两个分类。任务可靠性指的是产品出现故障后给工作任务造成的影响,也就是完成“规定功能”的能力,任务可靠性通常用致命性故障间隔任务时间 MTBCF( Mission time between Critical failure)和任务可靠度MR( Mission Reliability来评价。基本可靠性指的是产品在没有保障的情况下的正常工作的能力,衡量基本可靠性的很重要的一个参数就是平均故障间隔时间MTBF( Mean Time Between Failure)。
在可靠性应用方面,可靠性有固定可靠性和使用可靠性两种分类。使用可靠性指的是石英贴片晶振产品在具体的使用过程中,在一定的使用环境下,对产品的设计,制造, 维护等方面综合的评价。而固有可靠性顾名思义指的是产品本身所具有的可靠性水平,是对产品设计和制造水平的把握。
2.1.3可靠性管理定义
实现产品规定的可靠性可以从设计层面入手,也可以从生产方面入手,当然通过管理也能保证产品可靠性。在产品的可靠性上,设计人员对产品的设计水平接影响着产品可靠性,设计阶段是产品可靠性能否过关的第一个条件。生产是保证产品可靠性的第二个阶段,生产工艺水平的高低对产品的可靠性影响很大除了产品的设计、生产工艺外,可靠性工作最重要的一个方面就是可靠性管理, 可靠性管理水平的高低对产品可靠性的水平至关重要。
可靠性管理指的是为实现规定的产品可靠性所进行的各项管理活动的总称可靠性管理着眼于科学系统的管理方法,它应用一套完善、科学的管理方法来实现可靠管理活动高效有序的开展,可靠性管理试图利用尽可能有限的资源来发挥最大的作用,以满足产品规定的可靠性。可靠性管理是为了实现石英晶振,有源晶振,石英晶体振荡器等产品规定的可靠性所采取的所有措施的总和。
可靠性管理一般包括以下几个方面:制定相关可靠性规划;设计可靠性管理且织;明确组织各部门职能;建立可靠性保证管理系统;检查各组织可靠性工作开展情况;维护可靠性管理系统;
产品的可靠性不是石英晶振产品实现的一个阶段所决定的,它是由产品实现的全流程决定的,产品的设计、生产、维护都直接影响到了产品的可靠性。正因如此, 可靠性管理才显得如此重要,可靠性管理的职能就是管理好产品实现的设计、生产、维护等全过程的可靠性工作,最终实现产品规定的可靠性。因为可靠性管理涉及到产品实现的全流程中,所以可靠性管理涉及的人员基本包括了企业所有人员,其中比较重要的人员有:设计人员、采购人员、生产人员、质量管理人员以及工程维护人员等。
可靠性管理的意义主要有以下三点:
1.可靠性管理是科技发展的需要
随着科学技术的发展,高可靠性的石英贴片晶振产品是开展各种高精尖行业的需要,比如航空航天技术,现代大数据云计算业务。这些行业设备是不能出现任何问题的旦出现问题,轻则导致经济损失,重则危害人员的生命安全,为了满足产品的高可靠性,企业必须将可靠性管理纳入日常管理中。
2.可靠性管理可以给企业带来巨大经济效益
可靠性管理不到位,将影响产品的可靠性。产品的可靠性出现问题,短期来看,因为产品的维修,退换货,返工等等都将增加企业的运营成本,给企业带来损失,从长远看,产品出现可靠性问题,将给企业带来负面影响,进而影响顾客的使用热情,这种影响给公司带了的经济损失是无法估量的,因此可靠性管理可以给企业带来巨大经济效益。
3.可靠性管理可以提高企业的竞争力
良好的企业形象对企业的发展至关重要,企业形象的好坏主要由产品的可靠性水平决定的,产品的可靠性直接影响顾客对企业的印象。可靠性管理可以提高产品的可靠性,可靠性的增长就可以提高企业的形象,最终提高企业的竞争力所以说可靠性管理可以提高企业的竞争力。
石英晶体作为滤波、振荡元件已广泛应用在广播通讯、电子测量、航空、航天等方面.其发展历史只有短短几十年,美国是发展石英晶体最早的国家.最近一、二十年来,由于PCS、GSM、GPS、PDC、CDMA等诸多移动通讯技术的需求,石英晶体振荡器中的石英晶体谐振器不再是单一元件,它已发展成为组件,而且几乎全部以集成化、全集成化、全数字化形式展现出来,体积比过去缩小了数倍乃至数十倍.
石英晶体振荡器由晶体振荡电路和输出电路两部分构成.石英晶体振荡器电路分为并联晶体振荡电路和串联晶体振荡电路,常用并联晶体振荡电路.晶体工作在串联谐振频率ωS和并联谐振频率ωP之间,即呈现感抗.而振荡性能的优劣由晶体的品质、切割取向、振子结构及振荡电路共同决定.图1为AT切割和SC切割的频率温度特性曲线.可以看出,SC切割有高的静态和动态f-t稳定性、良好的老化率和相位噪声,但缺点是频率牵引灵敏度低、成本高.
最常用的振荡电路是集电极交流接地的考毕兹振荡电路(如图2所示).此电路的优点是电路简单、可靠、稳定.
输出电路的作用是对振荡获得的正弦信号进行缓冲、放大、整形,得到图3所示的标准输出电平,驱动负载或后级门电路.这里,还经常用到逻辑电平转换电路和分频、倍频电路.
其输出正弦波电平用Vp-p、VRMS或dBm表示,dBm的计算式为:
)1log(10mWPdBm?必要时,还须注明谐波抑制比.方波或矩形波输出电平应注明TTL、CMOS、HCMOS还是ECL、直流分量值,并且表示出占空比、上升时间、下降时间等其它相应参数.
标准输出负载为50Ω、1kΩ、10kΩ∥10pF或用驱动几个门电路表示,如驱动2个门,5个门电路.
对石英晶体振荡器的噪声系数有特殊要求时,则应严格设计振荡、放大电路及电源.譬如主振选用低噪声管、低噪声压控电压并使振荡在低电压工作,各级电路必须匹配以保证无反射、辐射.
CEOB2B晶振平台提供丰富的石英贴片晶振资料下载,收集了海内外进口晶振品牌的原厂代码,关于晶振应用的技术资料,这里只有你想不到的,没有你找不到的,关于晶振的任何信息欢迎登入CEO晶振平台查看了解.
印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接.随着技术的飞速发展,PCB的密度越来越高.PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求.首先,要考虑PCB尺寸大小.PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰.在确定PCB尺寸后.再确定特殊元件的位置.最后,根据电路的功能单元,对电路的全部元器件进行布局.
晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题. 晶振还有个作用是在电路产生震荡电流,发出时钟信号.
晶振的作用是为系统提供基本的时钟信号.通常一个系统共用一个晶振,便于各部分保持同步.有些通讯系统的基频和射频使用不同的石英晶振,而通过电子调整频率的方法保持同步.晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率.如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供.
电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定.在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路.石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^(-11).广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合.
晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低 的频率是串联谐振,较高的频率是并联谐振.
晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到石英晶振,贴片晶振标称的谐振频率.
一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略.
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择.
每种芯片的手册上都会提供外部晶振输入的标准电路,会表明芯片的最高可使用频率等参数,在设计电路时要掌握.与计算机用CPU不同,单片机现在所能接收的晶振频率相对较低,但对于一般控制电路来说足够了.
晶振是为电路提供频率基准的元器件,通常分成有源晶振和无源晶振两个大类,无源晶振需要芯片内部有振荡器,并且晶振的信号电压根据起振电路而定,允许不同的电压,但无源晶振通常信号质量和精度较差,需要精确匹配外围电路(电感、电容、电阻等),如需更换晶振时要同时更换外围的电路.有源晶振不需要芯片的内部振荡器,可以提供高精度的频率基准,信号质量也较无源晶振要好.
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.

石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置