由于频率测定可以达到很高的精度,估计检测限可达10-12g,因此利用这一特性,振动的石英晶振晶体可以制成非常灵敏的质量检测器一石英晶体微天平( quartz crystal microbalance,QCM)。
对于指定石英晶振晶片,fo、A、pμ、Hμ均为常数,因而,△f与△m的绝对值成正比,负号表示表面银电极层质量的增加,会引起石英晶体谐振频率的减少;而表面银电极层质量的减少,会引起石英晶体谐振频率的增加。即:增加银层质量和减少银层质量两种方法都可以改变石英晶振的谐振频率。
在前面的文章中有介绍过石英晶体谐振器的基本结构、原理、应用,以及与石英晶振相关的一些电性能参数.也有讲到过多种石英晶振频率微调技术.但是现有的三种频率微调技术均有各自的缺陷,而采用激光频率微调技术就可以克服掉这些缺陷.
非直接接触式的激光频率微调并不会造成晶片表面温升过高,因而不会产生蒸发频率微调技术和溅射频率微调技术中的膜层易被氧化的问题.同时,非接触式加工方法,克服了溅射频率微调技术法中存在的晶振晶片表面电荷积累问题;并且,由于激光具有高度的方向性其光斑只有几平方毫米,最小可达微米数量级,因而移动方便,定位准确,可以用于多片同时频率微调,这就克服了离子束刻蚀频率微调的生产率低的问题。
此外,激光频率微调技术还具有许多其他方案不可代替的优点:结合成熟的激光加工工艺和频率检测工艺的新技术,拥有较高的频率微调精确度;并且生产效率高,经济效益好,有很大的实用价值.
激光加工的灵活性,允许加工成任意的图形,这就对其应用范围没有限制,可以应用于各种形状的石英晶振,贴片晶振。并且, 激光频率微调与计算机技术相结合,可实现自动控制,是现代化大生产的发展趋势。综合以上,本课题选用了代表未来发展趋势的激光频率微调技术来对石英晶振进行频率微调。
因而,论文的主要研究任务就在于:
(1)从理论和实验两个方面,证实激光用于石英晶振频率微调的可行性,并获取定量的刻蚀数据。
(2)从理论方面,研究激光刻蚀以及激光损伤的机理,从而尽可能的减小激光刻蚀对于石英晶振晶片可能存在的影响。
(3)通过反复实验,探索激光刻蚀工艺研究,寻找激光刻蚀参数、工艺与刻蚀结果之间的定性、定量关系,增强激光刻蚀的可操作性和可控制性。
(4)在以上研究的基础上,进行激光刻蚀系统的研究。包括采样系统、数据处理系统、控制系统等整个系统的设计。
石英晶振激光频率微调技术就是用激光照射或扫描石英晶振晶体表面电极膜层,使其气化的方法对石英晶体谐振频率进行微调。用高速频率动态采集系统对石英晶体谐振频率进行采集作为反馈信号,控制激光输出参数.
缺点:(1)激光频率微调之后,会对晶振电性能参数产生一定影响。(2)激光频率微调后石英晶振晶片表面并不是均匀一致的,而是凸凹不平的。
优点:(1)由于激光束聚焦激光微调精度高,如激光调阻精度可达0.01%0.002%,激光频率微调精度可达5ppm;
(2)激光束易于导向、聚焦,实现各方向变换,极易与计算机系统配合,因此它是一种极为灵活的自动化加工方法;
(3)激光频率微调过程中,激光束能量密度高,加工速度快,并且是局部加工,因此,其热影响区域小,工件热变形小,后续加工量小。
(4)同离子束刻蚀频率微调一样,石英贴片晶振激光频率微调也是形成洁净的单层膜,可以提高频率特性与结合力;
(5)还可以对多种金属、非金属加工,特别是加工微电子工业中的高硬度、高脆性及高熔点的材料
(6)激光束移动准确方便,可以实现多石英晶振片同时微调,生产效率高,加工质量稳定可靠、经济效益好;
假设在石英晶振中,对应于能态E2的集居数为N2对应于能态E1的集居数为N1,一个平面波对应的光子通量正沿着物质的轴向Z传播。由于受激吸收和受激辐射而产生的光子通冕的改变为:dF=oF(N2-N1)dZ
它表示:如果N2>N1,则dF/dZ>0。石英晶振起放大作用。如果N2<N1, 则dF/dz<0,石英晶振起衰减作用。在热平衡条件下,各能态的集居数是按玻尔兹曼分布,N2<N1所以,晶振总是以吸收为主。如果在特定情况下N2>N1。该石头晶体的受激辐射作用大于受激吸收作用,该物质就可以产生更多的光子通量而作为光放大器。这种特殊状态称之集居数反转,指与通常状态的集居数分布不同。
按照业内的通用分类,压电晶体大致可分为:石英晶振,陶瓷晶振两种。其中石英晶振中又有许多的小分类,如:无源晶体,有源晶振,圆柱晶振,贴片晶振等等。
晶振制造行业的发展水平的因素不仅是自身的发展,同事与整个电子信息产业链中的地位与作用有着密切关系。就石英晶振制造业在整个电子信息产业链中所占据的地位和作用而言,在整个产业链中居于重要的地位,起到带动整个产业发展的作用
在前面的文章中我们有提到关于石英晶振磁控溅射技术原理磁控溅射是在真空条件下导入一定压力的惰性气体(Ar),阴阳极间形成一定强度的电场,并引入强磁场施加影响,使被阳离子轰击而溅射出的靶材金属粒子加速射向欲镀覆基片表面。那么接下来CEOB2B晶振平台将要说的是石英晶振磁控溅射频率微调技术应用及优缺点分析。
在真空等离子体气氛中,氩离子轰击银靶,溅射出高能银粒子射向晶振晶片表面,从而增加表面银电极的厚度,进而改变石英晶体谐振器的谐振频率。其装置示意图如图1.3所示。与蒸发频率微调法类似,磁控溅射频率微调在对石英晶体谐振器进行频率微调时,也分为粗调和细调两步进行。
石英晶振磁控溅射频率微调的优、缺点
优点:
(1)与蒸发频率微调法相比,溅射离子比蒸发原子或分子的平均能量大数十倍,提高了表面原子迁移率及体扩散,使膜层性能及附着力增强。
缺点:
(1)晶振磁控溅射镀覆设备价格昂贵,设备操作、维护复杂。
(2)对于靶材——银的利用率低,最高只能达到50%。
(3)与石英贴片晶振蒸发频率微调法类似,粗调后的膜面已暴露过大气,易被氧化,并且使得表面落上灰尘、杂质颗粒,而细调新镀膜层又较薄,导致膜层结合力差, 易产生脱焊、固熔断线问题。这同样也是磁控溅射频率微调技术的致命缺点。
(4)由于离子对阴极靶材的轰击,使靶材表面溅射出二次电子,这些电子经等离子体后,易堆积在阳极表面,使表面形成电荷积累,无法再继续沉积。
可见,以上两种方法都无法满足大规模工业生产和激烈的市场竞争的需要更能适应生产需求的新型工艺呼之欲出。
在前面的文章中我们知道激光具有高亮度、高单色性、高相干性、高方向性等四大优点,尤其是它具有极高的功率密度,可达1010-12w/CM2,因而是一种性能优异的加工光源。因此我们通过将激光微加工工艺应用于石英晶振频率微调,并通过理论与实验证明。
激光微加工”和其它微加工方法相比具有明显的优越性,表现为以下几方面:
(1)加工制作条件较易得到满足:
尽管“电子束”、“X射线”、“离子束”具有更短的波长,在提高分辨率方面有更多的好处,但它们在“曝光源”、“掩膜”、“抗蚀剂”、“成像光学系统”等方面都存在极大的困难,与此相比,激光有着明显的经济性和现实性。随着新型激光器的发展,它可将加工波长扩展至DUV和VUV,分辨率达到亚微米。
(2)功率密度高:
激光加工的功率密度可达108~109W/cm2,大大缩短了晶振产品加工时间。
(3)加工对象广泛
“激光微加工”可用于多种材料的精密加工,如金属、有机物、无机物、陶瓷等,在加工的过程中可控制激光的切削尝试,这使得利用激光进行高精密切削成为可能。
目前,“激光微加工”的应用领域比较广泛,主要包括以下几方面:
(1)精密打孔:
激光精密打孔可对各种材料进行打微孔的加工。目前,激光打孔已广泛应用于金刚石模具、钟表石英,贴片晶振,轴承小孔的加工,它也可用于对陶瓷、橡胶、塑料等非金属材料的精密打孔。
(2)精密切割:
激光精密切割的切缝窄,切缝边缘质量高,切割速度快,几乎没有残渣。在切割金属时可采用吹氧工艺使金属表面氧化而增强对激光的吸收能力;在切割非金属时采用吹惰性气体的方法排除熔融物。
(3)电阻电容的微调:
激光微调就是用激光束按一定的轨迹在膜片上照射,使膜层达到气化温度而迅速蒸发,减少了电阻膜的导电面积从而达到改变膜片电阻值的目的。电阻微调分薄膜电阻微调和厚膜电阻微调两种。薄膜电阻膜厚为几百埃至几微米,常用镍铬等合金材料,厚膜电阻膜厚为几微米至几十微米。它还可以用于电子线路或石英晶振等电子器件的功能微调,如有源滤波器的中心频率、带宽和增益的微调,运算放大器失调电压的微调等。电阻电容的微调一般采用YAG固体激光器。
(4)精密焊接
精密焊接加热速度快、焊点小、焊缝窄、热影响区小,因而焊接变形小、精度高且无需真空设备。它能对绝缘体直接焊接、能焊接有色金属及异种金属,它还可进行薄片间的焊接、丝与丝间的对焊及缝焊。激光精密焊接特別适用于微型、精密、排列紧密和热敏焊件。广泛应用于微电子元件如集成电路内外引线的焊接、电子器件管壳封焊、热电偶的焊接、仪表微丝焊接等领域.
如果将石英晶体置于交变电场中,则在电场的作用下,晶体的体积会发生周期性的压缩或拉伸的变化,这样就形成了晶体的机械振动,晶体的振动频率应等于交变电场的频率,在电路中也就是驱动电源的频率。当石英晶振晶体振动时,在它的两表面产生交变电荷,结果在电路中出现了交变电流,这样压电效应使得晶体具有了导电性,可以视之为一个电路元件。
石英晶体本身还具有固有振动频率,此振动频率决定于石英晶振晶体的几何尺寸、密度、弹性和泛音次数,当晶体的固有振动频率和加于其上的交变电场的频率相同时,晶体就会发生谐振,此时振动的幅值最大,同时压电效应在石英晶体表面产生的电荷数量和压电电导性也达最大,这样晶体的机械振动与外面的电场形成电压谐振,这就是石英晶体作为振荡器的理论基础。
石英晶振晶体的电气特性可用图中所示的等效电路图来表示,由等效电阻R1、等效电感L1和等效电容C1组成的串联谐振回路和静态电容Co并联组成,静态电容C0主要由贴片晶振,石英晶体的尺寸与电极确定,再加上支架电容组成。等效电感L1和等效电容C1由切型、石英晶体片和电极的尺寸形状来确定。等效电阻R1是决定石英晶振Q的主要因素,是直接影响石英谐振器工作效果的一个重要参数。R1不仅由切型、石英晶体片形状、尺寸、电极决定,而且加工条件、装架方法等对其影响也很大。因此,同一型号,同一频率的若干产品其Q值也相差很大。
在等效电路中,L1和C1组成串联谐振电路,谐振频率为:
通常石英晶体谐振器的阻抗频率特性可用图2.3表示。此处忽略了等效电阻R1的影响,由图可见,当工作频率f
晶振我们常说的一个名词,但它的解释预定义却各不相同,一些人将晶振定义为石英晶振,一些人将其定义为频率元器件,那到底那种是对的呢?其实这些定义只是相对而言,广义上来说晶振指的就是一些频率元器件的总称,例如SAW声表面波器件,石英晶振,陶瓷晶振,狭义定义而言晶振就是一类利用晶体片压电效应制成的电子元器件,通常叫做石英晶振简称晶振。
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.

石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置