未加银电极层的石英晶片表面放大图所对,可以看出上图中的晶片表面部分银电极层被完全剥落,暴露了石英晶振晶片表面。
这样大的频率调节量,不仅不附合频率微调的要求,而且会破坏晶振晶片的焊接性能,将来焊接在电路中时,露出的晶片表面与高温焊锡直接接触还会对晶片造成损伤。更为重要的是,经过网络分析仪的测量,表面电极层的完全剥落会影响到含有石英晶振电路的通带特性。使原来平滑的通带曲线,变成有很多杂散噪声的非平滑波形。且通带和抑制带之间的差值较原来有所减少。因而,这样的频率微调是失败的,应该减小激光扫描时间或激光电流强度, 以得到所需的频率微调量。
激光器系统主要由激光工作物质、泵浦氪灯、聚光腔、谐振腔组成。hgl-lsy50型系列激光打标机激光工作物质为掺钕钇铝石榴石,简称Nd3+:YAG棒。YAG石英晶振,石英晶体外形为圆柱形结构,棒的两个端面严格平行,与棒轴垂直,并且经过抛光镀膜。使用过程中要保持捧端面光洁。
对于连续运行的固体YAG激光器,一般采用氪灯泵浦的方式,氪灯的最大输入功率6KW,工作电流7~30A,工作电压110V~200V。氪灯在工作时,需用水冷却。
聚光腔采用的是进口陶瓷反射体,漫反射紧耦合结构的聚光腔。其优点是光束质量好,适用于精细打标。光腔内表面涂了釉层,因此耐腐蚀、搞衰老能力极强,没有使用寿命限制。
2.声光调制系统
Q开关是激光光学系统中一个重要光学元件,它通过光路偏转阻断和不阻断光的反射通道来抑制和产生激光脉冲。当激光器开始工作时,先让石英贴片晶振谐振腔处于低Q值状态,此时激光腔不断积累能量,当腔的Q值突然增大,此时,在部分反射锐端就有一个强的激光脉冲输出。因而Q开关能够达到提高激光峰值功率和实现光路开关控制双重功能。
3.光路及振镜扫描系统
光学系统:1064nm基于振镜的高精度反射、聚光系统。
扩束镜:光束反射前3倍扩束组合透镜
激光校正:选用0.6328m的HeNe激光准直系统指示光轴位置,指示光与激光同轴,在加工时可达到寻迹指示的功能,并及时进行精确对位。
振镜是使激光按照预定轨迹运行的执行机构,它主要由高精度伺服电机、电机驱动板、反射镜、F-θ透镜及直流供电源组成。
4.计算机控制系统
计算机配置P4处理器,抗干扰的电脑主板,中文 windows XP操作系统。华工激光开发的专业打标软件,并配备有专用ISA总线的DA控制卡,方便快捷地给与振镜扫描系统数据传递及控制声光调制开关的起停,达到按照软件设计的要求进行标刻的目的。
5.冷却系统
激光专用冷却系统是固体激光器中必不可少的辅助装置。在固体激光器中, 输入脉冲灯中的能量只有很少一部分转化为激光能量,其光转换率大约3~4%,其余均转化为热的形式损耗掉了。这部分热能对激光器件有很大的破坏作用,会使YAG石英晶体,有源晶体以及脉冲灯炸裂,聚光腔内金属零件熔化,聚光腔变形失效等。冷却与滤光系统的作用就是带走激光器中的这部分多余热量,防止激光器部件温升过高而失效,同时还可以减少泵浦灯中强烈的紫外辐射对工作物质的有害影响。
本冷却系统采用双循环水冷却方式。内循环采用纯净水冷却激光器,系统中包括流量保护,温度控制及超温报警等一系列装置,确保激光器的稳定工作。外循环采用压缩机制冷,既可以确保温度的稳定,又可以节约大量的自来水资源。循环水泵采用射流自吸式离心泵,全不锈钢结构。换热蒸发器选用全钛合金材料,盘管结构。
6.工作台
采用三维手动可调式工作台,操作方便灵活,定位精度高。
由于频率测定可以达到很高的精度,估计检测限可达10-12g,因此利用这一特性,振动的石英晶振晶体可以制成非常灵敏的质量检测器一石英晶体微天平( quartz crystal microbalance,QCM)。
对于指定石英晶振晶片,fo、A、pμ、Hμ均为常数,因而,△f与△m的绝对值成正比,负号表示表面银电极层质量的增加,会引起石英晶体谐振频率的减少;而表面银电极层质量的减少,会引起石英晶体谐振频率的增加。即:增加银层质量和减少银层质量两种方法都可以改变石英晶振的谐振频率。
在前面的文章中有介绍过石英晶体谐振器的基本结构、原理、应用,以及与石英晶振相关的一些电性能参数.也有讲到过多种石英晶振频率微调技术.但是现有的三种频率微调技术均有各自的缺陷,而采用激光频率微调技术就可以克服掉这些缺陷.
非直接接触式的激光频率微调并不会造成晶片表面温升过高,因而不会产生蒸发频率微调技术和溅射频率微调技术中的膜层易被氧化的问题.同时,非接触式加工方法,克服了溅射频率微调技术法中存在的晶振晶片表面电荷积累问题;并且,由于激光具有高度的方向性其光斑只有几平方毫米,最小可达微米数量级,因而移动方便,定位准确,可以用于多片同时频率微调,这就克服了离子束刻蚀频率微调的生产率低的问题。
此外,激光频率微调技术还具有许多其他方案不可代替的优点:结合成熟的激光加工工艺和频率检测工艺的新技术,拥有较高的频率微调精确度;并且生产效率高,经济效益好,有很大的实用价值.
激光加工的灵活性,允许加工成任意的图形,这就对其应用范围没有限制,可以应用于各种形状的石英晶振,贴片晶振。并且, 激光频率微调与计算机技术相结合,可实现自动控制,是现代化大生产的发展趋势。综合以上,本课题选用了代表未来发展趋势的激光频率微调技术来对石英晶振进行频率微调。
因而,论文的主要研究任务就在于:
(1)从理论和实验两个方面,证实激光用于石英晶振频率微调的可行性,并获取定量的刻蚀数据。
(2)从理论方面,研究激光刻蚀以及激光损伤的机理,从而尽可能的减小激光刻蚀对于石英晶振晶片可能存在的影响。
(3)通过反复实验,探索激光刻蚀工艺研究,寻找激光刻蚀参数、工艺与刻蚀结果之间的定性、定量关系,增强激光刻蚀的可操作性和可控制性。
(4)在以上研究的基础上,进行激光刻蚀系统的研究。包括采样系统、数据处理系统、控制系统等整个系统的设计。
石英晶振激光频率微调技术就是用激光照射或扫描石英晶振晶体表面电极膜层,使其气化的方法对石英晶体谐振频率进行微调。用高速频率动态采集系统对石英晶体谐振频率进行采集作为反馈信号,控制激光输出参数.
缺点:(1)激光频率微调之后,会对晶振电性能参数产生一定影响。(2)激光频率微调后石英晶振晶片表面并不是均匀一致的,而是凸凹不平的。
优点:(1)由于激光束聚焦激光微调精度高,如激光调阻精度可达0.01%0.002%,激光频率微调精度可达5ppm;
(2)激光束易于导向、聚焦,实现各方向变换,极易与计算机系统配合,因此它是一种极为灵活的自动化加工方法;
(3)激光频率微调过程中,激光束能量密度高,加工速度快,并且是局部加工,因此,其热影响区域小,工件热变形小,后续加工量小。
(4)同离子束刻蚀频率微调一样,石英贴片晶振激光频率微调也是形成洁净的单层膜,可以提高频率特性与结合力;
(5)还可以对多种金属、非金属加工,特别是加工微电子工业中的高硬度、高脆性及高熔点的材料
(6)激光束移动准确方便,可以实现多石英晶振片同时微调,生产效率高,加工质量稳定可靠、经济效益好;
假设在石英晶振中,对应于能态E2的集居数为N2对应于能态E1的集居数为N1,一个平面波对应的光子通量正沿着物质的轴向Z传播。由于受激吸收和受激辐射而产生的光子通冕的改变为:dF=oF(N2-N1)dZ
它表示:如果N2>N1,则dF/dZ>0。石英晶振起放大作用。如果N2<N1, 则dF/dz<0,石英晶振起衰减作用。在热平衡条件下,各能态的集居数是按玻尔兹曼分布,N2<N1所以,晶振总是以吸收为主。如果在特定情况下N2>N1。该石头晶体的受激辐射作用大于受激吸收作用,该物质就可以产生更多的光子通量而作为光放大器。这种特殊状态称之集居数反转,指与通常状态的集居数分布不同。
在前面的文章中我们有提到关于石英晶振磁控溅射技术原理磁控溅射是在真空条件下导入一定压力的惰性气体(Ar),阴阳极间形成一定强度的电场,并引入强磁场施加影响,使被阳离子轰击而溅射出的靶材金属粒子加速射向欲镀覆基片表面。那么接下来CEOB2B晶振平台将要说的是石英晶振磁控溅射频率微调技术应用及优缺点分析。
在真空等离子体气氛中,氩离子轰击银靶,溅射出高能银粒子射向晶振晶片表面,从而增加表面银电极的厚度,进而改变石英晶体谐振器的谐振频率。其装置示意图如图1.3所示。与蒸发频率微调法类似,磁控溅射频率微调在对石英晶体谐振器进行频率微调时,也分为粗调和细调两步进行。
石英晶振磁控溅射频率微调的优、缺点
优点:
(1)与蒸发频率微调法相比,溅射离子比蒸发原子或分子的平均能量大数十倍,提高了表面原子迁移率及体扩散,使膜层性能及附着力增强。
缺点:
(1)晶振磁控溅射镀覆设备价格昂贵,设备操作、维护复杂。
(2)对于靶材——银的利用率低,最高只能达到50%。
(3)与石英贴片晶振蒸发频率微调法类似,粗调后的膜面已暴露过大气,易被氧化,并且使得表面落上灰尘、杂质颗粒,而细调新镀膜层又较薄,导致膜层结合力差, 易产生脱焊、固熔断线问题。这同样也是磁控溅射频率微调技术的致命缺点。
(4)由于离子对阴极靶材的轰击,使靶材表面溅射出二次电子,这些电子经等离子体后,易堆积在阳极表面,使表面形成电荷积累,无法再继续沉积。
可见,以上两种方法都无法满足大规模工业生产和激烈的市场竞争的需要更能适应生产需求的新型工艺呼之欲出。
在国内外针对石英晶振生产工艺和理论研究做出了很多验证,主要有三种技术,最早出现的是蒸发沉积和磁控溅射沉积表面电极以增加晶振质量,进而微调晶振的谐振频率。随着研究的不断进展,自20世纪80年代中期开始出现关于离子束刻蚀石英晶振频率微调技术的研究.下面CEOB2B晶振平台所要讲的是有关石英晶振蒸发频率微调技术的优缺点对比.
优点:
(1)设备简单,操作容易;(2)不会造成频率漂移,对实时测量影响较小。
缺点:
(1)镀层与基片的结合力差(2)坩埚容积小,不可能长时间、连续工作;(3)材料浪费,由于银的价格昂贵,而每次蒸发到基片表面上的材料不足30%,因而造成很大的浪费.
(4)初次镀银电极后的石英贴片晶振膜面已暴露过大气,使得表面落上灰尘、杂质颗粒,再加上银在高温时易被氧化,而微调新镀膜层又较溥,导致膜层结合力差, 易产生脱焊、固熔断线问题。这是蒸发沉积法进行频率微调的致命缺点,也是在实际生产中生产率低下的主要因素。膜层示意图如图1.2所示。
磁控溅射频率微调技术:溅射技术包括磁控溅射、直流溅射、射频溅射等多种,目前广泛应用于石英晶振频率微调的溅射技术是磁控溅射技术。
磁控溅射技术原理:磁控溅射是在真空条件下导入一定压力的惰性气体(Ar),阴阳极间形成一定强度的电场,并引入强磁场施加影响,使被阳离子轰击而溅射出的靶材金属粒子加速射向欲镀覆基片表面。
在前面的文章中我们知道激光具有高亮度、高单色性、高相干性、高方向性等四大优点,尤其是它具有极高的功率密度,可达1010-12w/CM2,因而是一种性能优异的加工光源。因此我们通过将激光微加工工艺应用于石英晶振频率微调,并通过理论与实验证明。
激光微加工”和其它微加工方法相比具有明显的优越性,表现为以下几方面:
(1)加工制作条件较易得到满足:
尽管“电子束”、“X射线”、“离子束”具有更短的波长,在提高分辨率方面有更多的好处,但它们在“曝光源”、“掩膜”、“抗蚀剂”、“成像光学系统”等方面都存在极大的困难,与此相比,激光有着明显的经济性和现实性。随着新型激光器的发展,它可将加工波长扩展至DUV和VUV,分辨率达到亚微米。
(2)功率密度高:
激光加工的功率密度可达108~109W/cm2,大大缩短了晶振产品加工时间。
(3)加工对象广泛
“激光微加工”可用于多种材料的精密加工,如金属、有机物、无机物、陶瓷等,在加工的过程中可控制激光的切削尝试,这使得利用激光进行高精密切削成为可能。
目前,“激光微加工”的应用领域比较广泛,主要包括以下几方面:
(1)精密打孔:
激光精密打孔可对各种材料进行打微孔的加工。目前,激光打孔已广泛应用于金刚石模具、钟表石英,贴片晶振,轴承小孔的加工,它也可用于对陶瓷、橡胶、塑料等非金属材料的精密打孔。
(2)精密切割:
激光精密切割的切缝窄,切缝边缘质量高,切割速度快,几乎没有残渣。在切割金属时可采用吹氧工艺使金属表面氧化而增强对激光的吸收能力;在切割非金属时采用吹惰性气体的方法排除熔融物。
(3)电阻电容的微调:
激光微调就是用激光束按一定的轨迹在膜片上照射,使膜层达到气化温度而迅速蒸发,减少了电阻膜的导电面积从而达到改变膜片电阻值的目的。电阻微调分薄膜电阻微调和厚膜电阻微调两种。薄膜电阻膜厚为几百埃至几微米,常用镍铬等合金材料,厚膜电阻膜厚为几微米至几十微米。它还可以用于电子线路或石英晶振等电子器件的功能微调,如有源滤波器的中心频率、带宽和增益的微调,运算放大器失调电压的微调等。电阻电容的微调一般采用YAG固体激光器。
(4)精密焊接
精密焊接加热速度快、焊点小、焊缝窄、热影响区小,因而焊接变形小、精度高且无需真空设备。它能对绝缘体直接焊接、能焊接有色金属及异种金属,它还可进行薄片间的焊接、丝与丝间的对焊及缝焊。激光精密焊接特別适用于微型、精密、排列紧密和热敏焊件。广泛应用于微电子元件如集成电路内外引线的焊接、电子器件管壳封焊、热电偶的焊接、仪表微丝焊接等领域.
如果将石英晶体置于交变电场中,则在电场的作用下,晶体的体积会发生周期性的压缩或拉伸的变化,这样就形成了晶体的机械振动,晶体的振动频率应等于交变电场的频率,在电路中也就是驱动电源的频率。当石英晶振晶体振动时,在它的两表面产生交变电荷,结果在电路中出现了交变电流,这样压电效应使得晶体具有了导电性,可以视之为一个电路元件。
石英晶体本身还具有固有振动频率,此振动频率决定于石英晶振晶体的几何尺寸、密度、弹性和泛音次数,当晶体的固有振动频率和加于其上的交变电场的频率相同时,晶体就会发生谐振,此时振动的幅值最大,同时压电效应在石英晶体表面产生的电荷数量和压电电导性也达最大,这样晶体的机械振动与外面的电场形成电压谐振,这就是石英晶体作为振荡器的理论基础。
石英晶振晶体的电气特性可用图中所示的等效电路图来表示,由等效电阻R1、等效电感L1和等效电容C1组成的串联谐振回路和静态电容Co并联组成,静态电容C0主要由贴片晶振,石英晶体的尺寸与电极确定,再加上支架电容组成。等效电感L1和等效电容C1由切型、石英晶体片和电极的尺寸形状来确定。等效电阻R1是决定石英晶振Q的主要因素,是直接影响石英谐振器工作效果的一个重要参数。R1不仅由切型、石英晶体片形状、尺寸、电极决定,而且加工条件、装架方法等对其影响也很大。因此,同一型号,同一频率的若干产品其Q值也相差很大。
在等效电路中,L1和C1组成串联谐振电路,谐振频率为:
通常石英晶体谐振器的阻抗频率特性可用图2.3表示。此处忽略了等效电阻R1的影响,由图可见,当工作频率f
晶振在产品中的作用是千变万化的,根据不同产品的需求选择各式各样的石英晶振产品.CEOB2B晶振平台在前面的文章中讲到过,关于晶振作为微力传感器的发展等研究.
从上述可知,现有的基于微悬臂的扫描磁力显微镜存在种种不足。鉴于此,本文想研制出一种采用新型传感器的结构紧凑的扫描磁力显微装置,以达到高的测量稳定性、准确性和具有纳米尺度的测量分辨率。由此,该仪器的研究成功,可在下面几个方面起到促进作用。
首先它可用于磁记录工业中的质量检验控制中。例如对光盘制造进行超微观检测。另外对磁记录位的大小及分布等进行高分辨率的检测。再次,可用于对生物样品磁触觉细菌内亚微米磁畴颗粒进行直接观察及对单个细菌细胞内磁矩的定量研究。而这一点正是传统的悬臂式MFM所无法达到的。因此,本课题的完成,将对磁记录体系、铁及铁磁矿和其他材料的微结构研究和生物领域带来巨大的经济效益和社会效益。
本课题来源于国家教育部博士点专项基金项目“计量型多功能扫描探针显微镜的研究”。本人自进入实验室以来,一直从事基于石英晶振的MFM及其腐针技术的研究,具体研制内容如下:
(1)晶振作为测量元件的物理特性试验研究,晶振一表面系统的动力学模型研究及机理试验,使用晶振的微力传感器的构成、设计和测量。
(2)磁力显微镜测量机理的研究。
(3)探针电化学腐蚀技术的研究。
CEOB2B晶振平台通过研究并分析晶振的原理,同时免费提供关于晶振的各种技术资料下载.CEOB2B晶振平台只有你想不到的没有你找不到的,晶振型号规格,各大晶振品牌替换信息均可查询,欢迎登入平台了解详情.
接着前面的文章我们继续分析基于晶振的微力传感器的发展.有不懂的问题可以到CEOB2B晶振平台晶振技术资料中查看,有关石英晶振的各种型号,参数信息均可查到.
非接触模式是控制探针在样品表面上方扫描,始终不与晶振样品表面接触因而针尖不会对样品造成污染或产生破坏,避免了接触模式中遇到的一些问题。针尖和样品之间的作用力是很弱的长程作用力一范德华吸引力。非接触模式是测量长程力所采用的方法,其分辨率比接触模式的分辨率要低,由于针尖很容易被表面吸附气体的表面压吸附到样品表面,造成图像数据不稳定和对样品的破坏。因此非接触模式操作实际上较为困难,并且通常不适合在液体中成像。
轻敲模式介于接触模式和非接触模式之间(13l。其特点是扫描过程中微悬臂也是振荡的并具有比非接触更大的振幅(大于20nm),针尖在振荡时间断地与样品接触。由于针尖与晶振等样品接触,分辨率几乎和接触式扫描一样的好,但由于接触是短暂的,因此对样品的破坏几乎完全消失,克服了常规扫描模式的局限性。轻敲模式还具有大而且线性的操作范围,使得垂直反馈系统具有高度稳定性,可重复进行样品测量。对于软、粘和脆性样品的研究具有独到的优势但轻敲模式同样也增加了操作和设备的复杂性,在实际运用中存在着不易控制的缺点。
SFM技术的发展强烈依赖于带有特殊针尖的微悬臂制备技术的发展13-15。这种微悬臂和针尖必须是能够简便而快速制备的。在原子力显微镜发展之初,悬臂几何形状一般为L形。其主要是通过将一个很细的金属丝或线圈弯曲90°后,顶端经电化学腐蚀成一个针尖而制备得到的。这种制备方法完全依赖于实验技师的手工技能。第二种悬臂制备方法是微刻技术。第一代是简单的SiO2悬臂,形状为直角和三角,是从氧化硅片上刻蚀得到的。其同腐蚀金属针尖相比,不能很好的控制其尖锐程度。后来改用SiN4代替SiO2作为悬臂材料。Si3N4脆性较低,而且厚度可以从1.5降到0.3um。这一代悬臂具有完整针尖,而且曲率半径非常低。
美国斯坦福大学是在硅片上刻蚀出金字塔形的小片,可以得到曲率半径小于30nm的针尖。IBM公司则采用硅片(100)来制备具有完整针尖的硅悬臂,曲率半径低于100nm。这些通过微电子加工将针尖集成于一体的微悬臂方法有很好的可重复性,不需粘另外的针尖,便于大批量生产。所以一般商用的AFM都采用这种力传感器。但对于静电力显微镜和磁力显微镜来说,由于针尖材料具有特殊的要求,还是要采用在微悬臂上粘针尖的方法。
从以上可以看出,这些基于微悬臂的SFM它们都有一个共同的缺点;它们不仅需要一个结构复杂的微小悬臂作为力的传感器,而且还要一个激光干涉仪用于检测微悬臂的微小位移来获得表面变化信息。因而结构较为复杂,成本也很高,操作难度增大,也就造成其在应用中的局限性。所以必须采用其他的传感器和非光学的检测方法。
我们接着前面介绍到的石英晶振片的由来以及工作原理,我们接着说石英晶振晶片的电极对膜厚监控、速率控制至关重要。目前,市场上提供三种标准电极材料:金、银和合金。
金是最广泛使用的传统材料,它具有低接触电阻,高化学温定性,易于沉积。金最适合于低应力材料,如金,银,铜的膜厚控制。用镀金晶振片监控以上产品,即使频率飘移IMHz,也没有负作用。然而,金电极不易弯曲,会将应力从膜层转移到石英基片上。转移的压力会使晶振片跳频和严重影响质量和稳定性。
银是接近完美的电极材料,有非常低的接触电阻和优良的塑变性。然而,银容易硫化,硫化后的银接触电阻高,降低晶振片上膜层的牢固性。
银铝合金晶振片最近推出一种新型电极材料,适合高应力膜料的镀膜监控,如siO,SiO2,MgF2,TiO2。这些高应力膜层,由于高张力或堆积的引]力,经常会使晶振片有不稳定,高应力会使基片变形而导致跳频。这些高应力膜层,由于高张力或堆积的引力,经常会使贴片晶振,石英晶振片有不稳定,高应力会使基片变形而导致跳频。银铝合金通过塑变或流变分散应力,在张力或应力使基体变形前,银铝电极已经释放了这些应力。这使银铝合金晶振片具有更长时间,更稳定的振动。有实验表明镀Si02用银铝合金晶振片比镀金寿命长400%。
镀膜科技日新月异,对于镀膜工程师来说,如何根据不同的镀膜工艺选择最佳的晶振片确实不易。下面建议供大家参考
(1)镀低应力膜料时,选择镀金晶振片
最常见的镀膜是镀A、Au、Ag、Cu,这些膜层几乎没有应力,在室温下镀膜即可膜层较软,易划伤,但不会裂开或对基底产生负作用。建议使用镀金晶振片用于上述镀膜,经验证明,可以在镀金晶振片镀60000埃金和50000埃银的厚度。
(2)使用镀银或银铝合金镀高应力膜层
NiCr、Mo、Zr、Ni-Cr、Ti、不锈钢这些材料容易产生高应力,膜层容易从晶体基片上剥落或裂开,以致出现速率的突然跳跃或一系列速率的突然不规则正负变动。有时,这些情况可以容忍,但在一些情况下,会对蒸发源的功率控制有不良作用。
(3)使用银铝合金晶振片镀介质光学膜
MgF2、SiO2、A2O3、TiO2膜料由于良好的光学透明区域或折射率特性,被广泛用于光学镀膜,但这些膜料也是最难监控的,只有基底温度大于200度时,这些膜层才会与基底有非常良好的结合力,所以当这些膜料镀在水冷的基底晶振片上,在膜层凝结过程会产生巨大的应力,容易使晶振片在1000埃以内就回失效。
石英晶振在如今产品中的应用变得尤为重要,为了更好的使用晶振,我们除了要知道晶振的生产材料,晶振使用型号参数等一些条件之外,关于晶振的使用注意事项,以及石英晶振,贴片晶振晶片的一些关注点也应该知道.在前面的文章中CEOB2B晶振平台介绍了晶振晶片的由来以及其工作原理,下面我们要介绍的是膜厚控制仪用电子组件引起晶振片的高速振动和晶振监控的优缺点.
膜厚控制仪用电子组件引起晶振片的高速振动,约每秒6百万次(6MHz),镀膜时,测试每秒钟振动次数的改变,从所接受的数据中计算膜层的厚度。为了确保晶振片以6MHz的速度振动,在真空室外装有“振荡器”,与晶控仪和探头接口连接,振荡器通过迅速改变给晶振片的电流使晶振片高速振动。一个电子信号被送回晶控仪。晶控仪中的电路收到电子信号后,计算晶振片的每秒振速。这个信息接着传送到个微处理器,计算信息并将结果显示在晶控仪上:
(1)沉积速率(Rate) (埃/秒)
(2)已沉积的膜厚( Thickness) (埃)
(3)晶振片的寿命(Lie) (%)
(4)总的镀膜时间(Time) (秒)
更加精密的设备可显示沉积速率与时间的曲线和薄膜类型。
石英晶振监控的优缺点
◆优点:
1.晶振法是目前唯一可以同时控制膜层厚度和成膜速率的方法。
2.输出为电讯号,很容易用来做制程的自动控制。
3.对于厚度要求不严格的滤光片可以利用作为自动制程镀膜机。
4.镀金属时,石英监控较光学监控来的方便精确。
◆缺点
1.厚度显示不稳定。
2.只能显示几何厚度,不能显示折射率。
3.一般精密光学镀膜厚度只用做参考,一般用作镀膜速率的控制。
◆所以一台镀膜设备往往同时配有石英晶体振荡器监控法和光学膜厚监控法两套监控系统,两者相互补充以实现薄膜生产过程中工艺参数的准确性和重复性,提高产品的合格率。
在前面的文章中我们了解到了GPS的应用以及高精密石英晶体振荡器在GPS内部所提供到的作用,GPS晶振的工作原理等等。晶振的作用随着科技的发展到如今已是无处不在,各种大大小小的智能科技产品都会用到石英贴片晶振.接下来我们要说到的是GPS信号失效后保持算法的研究以及与晶振之间的联系.
从前面文中介绍GPS接收机的相关介绍可知,1PPS信号可能在多种因素的作用下丢失。如果通过解码发现失效,应立即停止以它作为基准来驯服OCXO晶振,否则可能对OCXO晶振产生误调整,使系统产生很大的误差,但是这时OCXO晶振的输出频率精度会由于老化和温度等因素的影响而不断降低。为了解决这一问题,采用保持算法, 即在正常锁定过程中,实时记录晶振的频率随时间的漂移率,即确定石英晶体老化率曲线,再利用温度传感器,建立温度和频率漂移率的函数关系。当GPS信号失效后,根据以前正常驯服状态下记录的历史数据,通过合理的算法对OCXO晶振输出频率的变化趋势做出准确预测,进而在此基础上实现对频率误差的实时校正,以保证输出频率精度在可容忍的精度范围内,直到GPS信号恢复后再继续锁定晶振。
OCXO石英晶体振荡器的老化模型是非线性的,而其频率温度变化模型则可认为是线性的,并且可以利用 Kalman滤波器来对这两种模型的参数进行估计,进而可以实现GPS信号失效后OCXO晶振频率的预测校正。然而老化率的非线性是对于较长时间而言的,在短时间内比如说一天,老化模型也可以被简化为线性,这大大方便了算法上的处理关于OCXO石英晶体振荡器的驯服保持模型的原理框图如图5.3所示
图中的三个开关S1、S2、S3在卫星工作状态正常时均处于开启状态,OCX0石英晶体振荡器直处于驯服状态,并且预测模型一直处于工作模式。如果系统经过判断确定卫星信号丢失,而且当时已经完成锁定,系统便会处于保持模式,三个开关均闭合, 这样老化和温度预测模型可以根据其预测的结果并以自己本身的输出作为观测量的输入来实现频率偏差的预测。预测模型的最终输出是出四项叠加而成:驯服的初始校正量、老化模型的预测输出、温度影响模型的预测输出和温度模型的延迟补偿量.
为了实现1PPS信号失效后的保持,必须先将由老化和温度变化引起的影响量分离开来,而分离算法的确定与这两种影响的性质有密切关系。一般认为老化的影响属于慢变,而温度的影响则相对变化较快,即在频域,老化的影响处于低频段,温度的影响处于较高的频段,这样就可以将它们分离开来,即采用不同类型和带宽的数字滤波器就可以实现这两种影响的分离国,ⅢRF、IRF2和RF为滤波器, 其中IRF和IRF3为1阶的低通滤波器,IRF2为3阶的低通椭圆滤波。
图中的IRF1是用来同时通过锁定状态下由温度变化引起的校正量中的高频变化部分和老化引起的低频变化部分,其带宽应该由高频分量确定。在一般的应用环境下,温度的最大变化率可以达到10℃h,而这里所采用的OCXO贴片晶振的线性频率温度系数为6~8ppb/40℃,于是可以得到最大温度变化率引起的频率漂移率达到4.17~5.56×10-4ppb/s。所以IRF的带宽被设计为3×10-3ppb/s(3mHz),即是最大频率温度漂移率的5.4倍,这样就可以通过所需要的信号,并且针对校正信号中由GPS接收机引入的高频噪声,进行每10倍频10dB的衰。
IRF2用于从经过RF滤波后的校正量中分离出老化的影响,那么其带宽由反映老化的低频分量决定。这里采用的OCXO晶振的老化率为0.5ppbd或者58×10-6ppb/s,所以IIRF2的带宽被设计为3×10-5ppbs(0.03mHz),即为秒老化率的5.2倍,并且其阻带衰减最小为50dB,带内波动为1.5dB,这样可以较好的过滤掉温度的影响。IRF2的输出直接输入给了老化的 Kalman预测模型,并且将其从IRFl的输出中减掉,可以提取出温度的影响。
IRF用和RF完全相同的设计,主要用来进一步抑制GPS接收机引入的噪声和消除IRF2输入输出信号的数字相减带来的毛刺。由于IRF1和IRF2处于温度影响预测模型的输入通道上,会使得校正量的预测产生延迟,使预测滞后于IRFl的输入信号。因此有必要在温度预测模型的输出加上一个延迟补偿模块,由它在保持模式时计算出相应的补偿量,并叠加到预测模型的输出信号上来消除延迟的影响。这里的延迟补偿量由温度预测模型输出的变化率和滤波器的延迟量相乘来得到,而滤波器的延迟量的最优估计为个小时,温度预测模型输出变化率由其输出对于时间的一阶微分的100点滑动平均来得到,其中每秒采集一个数据。
在进行系统测试时,被锁晶振采用高稳定度恒温晶体振荡器(10MHz±3Hz),GPS接收机选用LASSEN IQ型,采用5585B-PRS型铯原子频标作为频率参考,该铯原子频标可输出10MHz信号,具有较好的频率准确度及稳定度,其频率准确度优于5×10-12,秒级频率稳定度优于1×10-11/s。
采用相位比对的方法来测试被锁石英晶振的相对频率准确度,测试连接图如图5.1所示。将被锁定的晶体振荡器的10MHz频率信号和铯原子频标产生的10MHz频率信号分别作为开关门信号输入到精密时间间隔测试仪HP5370B(分辨率为20ps) 进行比对测试,HP5370B输出的时间间隔值与两个比对信号的相位差成正比。该时间间隔值的变化反映了两个信号的相位差的变化。计算相对频差的公式为:
其中,τ为取样周期;△T为在取样周期τ内两信号累积的相位差变化。由此式可以看出,△T的测量误差取决于HP5370B的时间间隔测量分辨率,最小为±20ps,也就是在ls闸门时间内相对晶振频率准确度为±2×10-11,但是随着采样时间r的增大,测量误差可以大大的减小,精度也不断提高。
由于天气等原因,对接收机工作有影响,所以做实验时适当选择比较好的天气。取样时间设定为40s,OCX0石英晶体振荡器在系统运行3小时后即进入锁定状态,开始对晶体振荡器锁定状态下与铯原子频标进行相位比对测试,记录系统连续工作10小时的数据,图5.2为OCXO晶振的频率准确度随时间的变化曲线。
从图5.2中可以看出,锁定后OCXO晶振的频率值在标称频率上下起伏,最大起伏约为9.0×10-11。通过计算,图5.2中所显示的频率平均准确度达到73×10-12,相对于所采用晶体振荡器的约5×10-10/d的老化率有明显改进,同时也说明晶振频率的漂移得到了一定程度的修正。
在进行石英贴片晶振频率稳定度测试时,由于实验室测频仪器测量的分辨率的有限,ls和10s的稳定度由直接测频法计算得到,而100s、1000s、5000s和10000S由比相间接测频法计算得到,相位比对数据采用上面图5.2中所采集的数据。锁定后, OCXO的频率稳定度测试结果如表5.1所示:
从表51中可以看出,锁定后的OCXO恒温晶体振荡器的短期稳定度基本保持了其本身的指标,而其中长期稳定度不是非常理想,这是由lPPS中存在的中长期相位漂移以及Kalman滤波和PID控制参数还不是很合理造成的,但总体较其本身指标,有一定程度的提高。因此,后续工作需要增大滤波时间常数,进一步继续优化 Kalman滤波和PID控制模型的参数,使得 Kalman滤波的收敛值更小,对OCXO晶振频率的调整幅度和频度更低。
高精度的时间测量是实现驯服保持的基础,一般都使用比时法测频差的方法实现对OCXO晶振的锁定,其中最常用的方法就是直接计数法,即在有待测时间间隔构成的闸门信号中填入脉冲,通过必要的计数电路,得到填充脉冲的个数后再乘以填充周期便可计算出待测的时间间隔。但是这种方法的测量精度很低,主要取决于填充脉冲的频率,频率越高测量精度越高,但在实际应用中,这会大大提高对相应器件和线路的要求,同时还存在±1个字的量化误差,直接计数法如图4.3
所示:
其它常用的时间间隔测量方法还有模拟内插法、游标法、量化延迟法、时间幅度转化法,虽然这些方法都具有很高的测量分辨率,但是它们的测量范围都很小,于是考虑将直接计数法和上述某一种高分辨率测量方法相结合的测量方法, 从而可以同时兼顾到测量分辨率和测量范围。
本文采用将直接计数法和时间一幅度转化法相结合的时间间隔测量方法,对时间间隔闸门首先用直接计数法计数,由图43所示,T为被测时间间隔值,T为由直接计数法计算得到的时间间隔测量结果,T和T2分别代表代表时间间隔的开始信号和结束信号与计数时钟信号之间的不同步部分,即直接计数法中存在的石英晶振量化误差部分,而这两部分短时间间隔值由采用时间一幅度转换法来测量。因此被测时间间隔值可由下式计算得到:
TX=TN+T1-T2 式(4-1)
由于输入到时间间隔测量模块的两信号为来自GPS接收机的IPPS信号和OCXO晶振分频得到的1Hz信号,分别以待测闸门的上升沿和下降沿作为短时间间隔T和T的开门信号,以紧随它们的第一个填充信号的上升沿和下降沿作为关门信号。
因为填充脉冲为OCXO石英晶体振荡器输出的10MHz信号,理论上1Hz信号和填充脉冲的上升沿是严格对齐的或者有一个固定的相位差,所以可以认为结束信号与填充脉冲之间的相位关系不再是随机的,而是相关的。也就是在该系统中只需考虑待测时间向间隔开门后的短时间间隔T,而不必考虑关门后的短时间间隔T2,所以待测时间间隔变为T=T+T1,时间一幅度转换法的原理图如图4.4所示同。
具体电路实现时采用CPLD和带有AD转换器的单片机MSP430F247)以及外围的电流源电路、高度开关、放电MOS管等构成,充放电电路如图45所示。
CPLD用于取出直接计数法中计数时钟信号和代表被测时间间隔闸门的开始信号和结束信号之间的不同步部分,并将它们转化为窄脉冲输出。当短时间间隔脉冲CH1的开门信号输入到三极管Q1的基极时,用+5V的直流电源对电容进行充电,以实现时间一幅度初步转换;当短时间间隔闸门的关门信号到来时,三极管截止,停止充电并保持充电电压。
晶振信号调理电路将其幅度调理到单片机AD转换器的输入范围内后送入单片机的AD转换器进行转化,完成转化后向效应管BS170发出个复位信号CH_2,使场效应管导通,电容迅速放电,为下一次测量做好准备最后单片机根据AD转换结果,计算出对应的时间间隔值,从而完成了一次完整的测量过程。
这种方法的优点是测量分辨率高,转换时间短。但不足之处就是转换存在非线性误差,因此使用前需要对其校准,将时间间隔随时间变化的两路不同源信号同时输入测量模块和HP5370B,进行测量范围内的约40点逐点校准,而后将校准数据存入单片机自带的Fash存储器,测量时査表并线性拟合得到结果,该区间内根据式(4-2)按线性关系计算该电压值所对应的短时间间隔值T1.
其中U为AD转换得到的电压值,Um和U-分别为所对应电压区间的上限电压值,Tm和T分别为Um和Um所对应的标准时间间隔值,这样就在一程度上减小了非线性误差。
在前面的文章中我们有提到过对基于GPS信号的OCXO驯服保持的总体设计方案进行了介绍,而在接下来的文章中CEOB2B晶振平台将对该系统中的关键部分:时间间隔测量模块、 Kalman滤波消除IPPS信号抖动模块以及频率校准等进行详细的阐述。
GPS秒信号的判断及处理
由第二章的叙述可知,GPS接收机正常工作的条件是至少同时可以接收到四颗以上卫星的有效信号,当接收到的卫星个数少于4颗时,定位和定时信息是不准确的甚至是错误的。
出现这样的原因一般有:个别卫星退出工作、天线安装位置不当、卫星故障等,这些都有可能造成接收到有效信号的卫星个数过少。而且有实验证明即使将接收天线从接收机上拔掉,在其后的很长一段时间内GPS接收机仍有PS输出,但此时的1PS与UTC已经有很大的差别,由此可见,GPS接收机完全有可能输出错误的lPPS信号。另外,信号在传递过程中受到来自外界电磁信号的干扰,GPS接收机输出的1PPS信号中可能含有毛刺,导致伪1PPS信号的产生,从而导致系统的误动作,因此有必要采取抗干扰措施。这里采用硬件开窗方法消除干扰2,原理如图4.1所示。
图中的CLK信号由高稳定度的恒温晶振提供,在系统上电复位后,启动单片机的串行通讯口,接收GPS信息,根据解码信息中的工作状态指示判断PPS的有效性。当初始触发分频信号到来之后,通过控制信号设置FPGA中的计数器在接收到的GPS1PS上升沿的附近产生一个短时间的高电平窗口信号,相当于一个与门,过滤掉窗口外的干扰信号。
另外,通过石英晶振单片机自带的外部中断模块来对去掉干扰后的PPS信号的上升沿进行检测,根据检测结果判断GPS接收机是否正常工作,来决定系统的工作模式是驯服模式还是保持模式,具体消除1PS中干扰脉冲的波形图如图4.2所示。
下面主要介绍处理干扰时的重点:
1.初始触发分频信号的判断
系统初始化后,用单片机的外部中断连续三次检测来自GPS接收机的1PPS信号,如果三次都检测到则给出初始触发分频信号。
2.设置合理的“窗口”信号
由于OCXO晶振的输出频率比较稳定,当初始触发分频信号到来吋刻起,利用FPGA中的计数器和OCXO石英晶体振荡器输出的倍频信号可以大致计算出下一个有效PPS脉冲的到来时刻,经过(1-△)秒后打开“窗口”,在计算得到的第二个PPS脉冲的到来时刻后的M秒后关闭该“窗口”,只要M选择得足够小,则抗干扰效果就非常的明显。
3.GPS信号的失效检测及处理
对于整个驯服系统来说,GPS信号丢失会产生严重的后果,原因可能是接收机接收到的卫星个数少于四颗,如上面所说的天线的安装,有源晶振,石英贴片晶振选用问题等,使接收机处于非正常工作状态。或者是GPS接收机与单片机模块或者与门逻辑的接口出现问题,使GPS秒脉冲信号或时间状态信息不能正常传输。
假如是第一种情况,接收模块可通过GPS接收机串口输出的状态信息判断其输出信号是否失效,后面的软件程序作出相应的处理。假如是第二种情况,属于两种功能模块之间的通信故障,系统相关模块不可能从GPS接收模块获得GPS的工作状态信息或者秒脉冲信号,GPS_1PPS秒脉冲入口处的电平不会出现任何变化。
此时,相关模块必须有独自判断GPS是否失效的能力。可以在“窗口”信号开通期间使用单片机相关外部中断模块,如果没有检测到正确跳变,说明GPS信号失效;如果“窗口”信号开通期间相关中断模块能捕捉到正确跳变,则说明GPS信号可能已恢复正常,此时系统可以继续对OCXO晶振进行校准。
晶振是种控制频率元件,在电路模块中提供频率脉冲信号源,在信号源传输的过程中晶振在电路配合下发出指令,通过与其他元件配合使用。
单片机晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的石英晶振,而通过电子调整频率的方法保持同步。晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。—个机器周期包括12个时钟周期。如果一个单片机选择了12MHz石英晶振,它的时钟周期是1/12us,它的一个机器周期是12×(1/12)us,也就是1us。单片机中少不了石英贴片晶振的使用,那么关于单片机选择又有哪些窍门呢?
随着计算机和微电子技术的迅猛发展,单片机技术在各个行业得到了广泛的应用。由于单片机集成度高、体积小、功能强、功耗低、使用方便、价格低廉等一系列优点,被广泛的应用在各种智能仪表、工业控制及家电控制领域。根据系统设计的要求,单片机是整个系统的控制和数据处理中心,需要丰富的lO资源实。
现点阵液晶显示并与FPGA等芯片进行数据传输;需要串口完成与PC机通信的功能;需要该单片机具有片上A/D(模数)转换功能配合FPGA芯片,石英贴片晶振完成时间间隔测量,还需要L/O口中断、串口中断和A/D转换完成中断等中断资源满足设计中的各种中断处理,而且系统还需要在单片机上实现 Kalman滤波等算法,需要芯片具有硬件乘法器,具有一定的数据处理能力综合以上要求选择TI公司的MSP430系列中的MSP430F247型单片机作为整个系统的控制部分。
MSP430系列中的MSP430F247型单片机采用的是“冯-诺依曼”结构,具有16位结构的CPU,采用RSC指令集,最高工作频率8M,片上集成了64K的 FLASH ROM和1K的RAM,通过JAG接口,可以方便的实现在线编程和调试,非常利于软件程序的调试。
这款单片机的特点有:
(1)具有丰富的I/O资源,六个8位的I/O端口,所有的o位都可以独立程,任何输入输出和中断条件的组合都是可以的,其中PI和P2口的8位都具中断能力,如串口接收、发送中断和A/D转换完成中断等,所以此款单片机的中断能力得到大大提高,符合此系统设计需要用到中断处理的要求;
(2)具有丰富的外围模块:8路12位的A/D输入可实现A/D转换的功个 USART串行接口可实现与PC机通信的功能.
(3)具有硬件乘法器,可以大大的提高对数据的处理能力,例如实现 Kalman滤波等算法。该的单片机功能齐全,完全可以满足系统设计的需求,而且还有利于系统进一步的扩展升级。
通过前面CEOB2B晶振所发表的文章中相信大家对GPS系统以及晶振在GPS中的应用有了更深的了解.我们知道GPS输出的1PPS信号具有很好的长期稳定性,但是短期稳定性却很差。利用GPS信号来定时估计出晶振输出频率的偏差,并实时地进行校准,就可以得到短期稳定性和长期稳定性都很好的频率标准。锁定后的晶体振荡器能输出高精度的频率信号,其短期稳定度能保持本地振荡器的水平,优于l×10-11/s,并能在本地被控振荡器上有效地复现接收的标准时间频率信号的长期稳定度和准确度,锁定状态下频率准确度优于5×10-11,日漂移率达到10-13量级。
根据系统需要开发成本低、安全可靠的设计原则,提出了系统的整体设计方案。整个系统由高稳定度有源晶振,恒温石英晶体振荡器、GPS接收机、时间间隔测量模块、微处理器模块、高分辨率DA转化及信号调理模块、分频模块和显示等部分构成, 在控制软件(包括FPGA、单片机两部分)的控制下协调工作,其组成框图如图
3.1所示
方案各模块功能介绍
1.GPS接收机模块:接收GPS信号,输出标准IPPS秒信号(一般含有干扰脉冲),所以直接使用此信号不合适,必须通过解码判断其有效性并进行处理,然后用于校准石英晶振。
2.时间间隔测量模块:测量GPS接收机输出的1PPS信号和OCXO分频产的1Hz秒信号的上升沿之间的时间间隔值,并把测量结果传送给数据处理模块, 考虑到精度问题,先把OCXO晶振倍频到100MHz再分频成1Hz。
3.数据处理模块:在GPS信号有效时,接收时间间隔测量模块传送的数据运用Kalman滤波算法对测量的时间间隔进行数字滤波,消除lPPS信号的抖动。具体实现取相隔采样周期τ的两个滤波后的时间间隔差值△T1和△T2,得到相位差△T=△T2-△T1,用比时法计算相对频差:
其中,f6为被校准石英晶体振荡器的标称频率,Δf为石英晶体振荡器的测量频率与标称频率的差值。计算出频率4f后,根据OCXO的压控灵敏度系数K计算被校石英晶体振荡器控制电压的数字量,再通过高精度的D/A转换得出石英晶体振荡器的控制电压(控制电压U=U+Δf/K),达到校正晶体振荡器输出频率的目的。经过多次测量和控制,最终把石英晶体振荡器的准确度和稳定度都锁定在GPS卫星星载钟上。
同时, 系统还有自动记录功能,把校正数据,根据接收传感器组和辅助时钟模块发送的时间和温度等信息,把校正数据和与之对应的时间、温度等信息保存起来,GPS信号有效时,通过相应的算法分离出温度、老化等因素对石英贴片晶振的影响,如果检测到GPS信号失效后,结合采集到的实时温度和时间信息,利用失效前得到的预测模型,计算出老化和温度各自对输出频率的影响量,然后合成输出校正量来继续校准恒温晶振,使石英晶体振荡器能继续保持一定的精度。同时控制LCD的显示。
4.高分辨率D/A转换及信号调理模块:接收数据处理模块发送的控制数据, 将其转化为模拟控制电压,并通过相应的信号调理电路,使模拟电压的范围符合OCXO晶振的电压压控范围。
5.分频控制模块:将输入的经过校正后的原始频率信号进行分频,产生用于测量和同步输出的秒脉冲,并可以控制输出秒脉冲的脉冲宽度。
6.传感器组和辅助时钟模块:采集对OCXO晶振输出频率精确度有一定影响的温度和老化时间等信息,并传输给数据处理模块,为分离出温度、老化的影响提供相应的数据。
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.

石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置